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ABSTRACT 

This work supports ongoing efforts by the Edwards Aquifer Authority to develop a groundwater 
management model of the San Antonio segment of the Edwards Aquifer. Values of hydraulic 
conductivity, a key parameter controlling groundwater flow, are assigned to the model grid 
developed by the U.S. Geological Survey (USGS). The approach used, a combination of 
spatial statistical methods and advanced techniques for automatic model calibration, 
incorporates existing data of various types and avoids manual adjustment of the hydraulic 
conductivity distribution. 

Hydraulic conductivity in heterogeneous aquifers depends on the spatial scale of the 
measurement. Existing hydraulic conductivity measurements in the Edwards Aquifer are 
mostly from single-well drawdown tests and are appropriate for the spatial scale of a few 
meters. These need to be modified or upscaled before being applied to the 402 m x 402 m 
computational cells intended for the management model. An approach based on 
nonparametric geostatistics, stochastic simulation, and numerical flow simulation was used 
to upscale and interpolate to the groundwater management model grid. This formed 
Revision 1 of the hydraulic conductivity model. 

Revision 1 of the hydraulic conductivity honored existing hydraulic conductivity measurements, 
but does not honor measurements of hydraulic heads. Hydraulic heads carry significant 
information about the underlying hydraulic conductivity distribution, but using hydraulic heads to 
infer hydraulic conductivity has no unique result and is poorly suited for numerical calculation. 
A recent approach for automatic model calibration based on Bayesian statistics was used to 
generate the final hydraulic conductivity model (Revision 3), which matches hydraulic head 
measurements. This approach uses statistical methods to pick from the universe of potential 
hydraulic conductivity models the one that minimizes deviation from a preconceived or prior 
model. This step required the construction of a groundwater flow model incorporating boundary 
conditions, aquifer thickness, pumpage, and recharge rates provided by USGS. Thus, it 
merges data of various types in a way that also honors the physics of groundwater flow. 

A fully calibrated model was not one of the original goals of this project. Nevertheless, a 
hydraulic conductivity model calibrated to steady-state hydraulic head measurements and 
partially calibrated to steady-state spring discharges was achieved. With each new revision of 
the hydraulic conductivity model, the match between the calculated and observed hydraulic 
heads and spring flows improved, thereby demonstrating the utility of the approach. The final 
hydraulic conductivity model provides a starting point for conventional manual model calibration. 
With some modest refinements, the approach developed and applied here could also be used 
In fully automatic model calibrations. 
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1 INTRODUCTION AND BACKGROUND 

The U.S. Geological Survey (USGS) and the Texas Bureau of Economic Geology (BEG) are 
currently developing a groundwater management model of the San Antonio segment of the 
Edwards Aquifer. After calibrating to historical data on hydraulic heads and spring discharge 
rates, the two-dimensional model will be used to assess various groundwater management 
scenarios for the Edwards Aquifer. To support the USGS and BEG effort, the Center for 
Nuclear Waste Regulatory Analyses (CNWRA), a division of the Southwest Research 
Institute ™, developed an improved model for hydraulic conductivity in the Edwards Aquifer. 
This report describes the results of this Edwards Aquifer Parameter Estimation Project. 

The broad objective of the Parameter Estimation Project is to provide improved representations 
of the areal distribution of vertically averaged hydraulic conductivity across the San Antonio 
region of the Edwards Aquifer using the best available quantitative techniques. The specific 
objectives are (i) to interpolate existing sparse measurements of hydraulic conductivity to 
model grid locations provided by the USGS and (ii) to address the discrepancy in spatial 
scale between the single-borehole based hydraulic conductivity measurements and the 
402 m x 402 m (1/4 mi x 1/4 mi) grid cells. The second issue arises because hydraulic 
conductivity in a heterogeneous medium Is dependent on the scale at which it is defined. 
Thus, single-borehole based measurements, which Investigate the scale of a few meters, 
need to be modified or "upscaled" before being used in the USGS model. A statistical 
framework was selected at the beginning of the project to minimize subjective input and thus, 
maximize defensibility of the model in a legal setting. 

Development of the hydraulic conductivity model proceeded in stages. An initial properties 
model was delivered to the Edwards Aquifer Authority in November 2000. This initial model 
was intended to be a "placeholder" for use by the USGS in developing and debugging the 
groundwater management model. The initial model was replaced by Revision 1 in July 2001, 
which was intended to support steady-state calibration of the management model. Following 
delivery of Revision 1, it was determined that the quality of the hydraulic conductivity data was 
insufficient to justify further analyses with this data alone, and it was decided to also incorporate 
hydraulic head data. Using hydraulic head data to infer hydraulic conductivity is a process 
known as "inverse modeling" or "parameter estimation by inversion." In general, inversion is 
difficult because the solution Is nonunique and the calculations are subject to numerical 
instabilities. However, recent years have seen important progress in the technology of inverse 
modeling, and a suitable approach based on Bayesian statistics was Identified. This approach 
has the important advantage of being able to use directly the existing work on upscaled 
hydraulic conductivity (Revision 1 ). Revision 2 of the hydraulic conductivity model, delivered in 
March 2002, was a preliminary application of the Bayesian technique. Revision 3 of the 
hydraulic conductivity model, which is Included with this report, represents a further refinement 
of the approach. 

In the remainder of this report, the analyses leading to Revision 3 of the hydraulic conductivity 
model are described, the performance of the models are assessed using groundwater flow 
simulations, and some suggested approaches for future refinements of the model are provided. 
Revision 2 Is not described because It is completely replaced by the final property model. The 
geostatistical analysis used to generate Revision 1 Is Included because it forms the starting 
point for Revision 3. 
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2 HYDRAULIC CONDUCTIVITY DATA 

The starting point in the analysis is the transmissivity/hydraulic conductivity dataset provided by 
BEG (Mace, 2000; Mace and Hovorka, 2000; Hovorka, et at., 1998). Although a few data are 
from traditional aquifer tests, most of these data are from single borehole tests and are thus 
appropriate for the local scale (a few meters). Transmissivity estimates for the single-well tests 
were obtained from measured specific capacity using a relationship between transmissivity and 
specific capacity that was determined empirically for the Edwards Aquifer (Mace, 2000). 
Vertically averaged hydraulic conductivity K was then obtained from transmissivity by dividing 
by the screened interval of the well. The only manipulation of the data performed for the 
present study was to geometrically average values when multiple values (representing different 
tests) exist for the same well. After this averaging, the dataset contains 653 values of hydraulic 
conductivity in the confined zone and 108 values in the unconfined zone. Data locations are 
shown in Figure 2-1. The color scale is logarithmic in K with warm colors representing 
large values. 

2.1 Univariate Statistics 

Univariate statistical distributions of hydraulic conductivity data are shown in Figure 2-2 for the 
confined and unconfined sections of the Edwards Aquifer. Both distributions are reasonably 
well approximated as lognormal, although the hydraulic conductivity distribution for the confined 
section does have a lower tail that is enhanced relative to the lognormal distribution. The mean 
and variance for the confined and unconfined sections are significantly different, which is the 
main motivation for treating them as separate populations. The geometric mean is 5. 7 mid 
(18.8 ft/d) for the confined section compared to 0.4 m/d (1.3 ft/d) for the unconfined zone. The 
variance in log-K is 6.4 and 9.7 for the confined and unconfined sections. Since It is vertically 
averaged hydraulic conductivity that is analyzed and not transmissivity, the differences are not 
due to differences in aquifer thickness between the confined and unconfined zones. The cause 
of the smaller hydraulic conductivity in the unconfined zone is not clear, but It Is noted that lower 
values of hydraulic conductivity in the unconfined region would result if the most permeable 
subunits of the Edwards group were located near the top of the formation. 

2.2 Data Limitations and Potential Effects on the Analyses 

The data from the single well tests have three principal limitations: 

1. The empirical correlation between transmissivity and specific capacity is strong but 
imperfect; and for a given specific capacity value there may be as much as an 
order-of-magnitude spread in the corresponding transmissivity values. Thus, the data 
forming the starting point of the study have significant uncertainty. This uncertainty has 
two consequences: it enhances the spread in the univariate distribution as compared 
with the true hydraulic conductivity, and tends to mask spatial correlation. Given that 
Mace and Hovorka (2000) found that transmissivity values as inferred from drawdown 
and recovery data range over five orders of magnitude, the additional spreading 
introduced by an order-of-magnitude spread in the specific capacity versus 
transmissivity relationship is relatively unimportant. The second effect, the masking of 
spatial correlation, is likely to be more important. This effect is manifest as an increased 
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Figure 2·1. Well locations used to form the basis of the geostatlstical interpolation. 
Points are colorad coded according to hydraulic conductivity on a logarithmic scale. 
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"nugget effect" in the spatial correlation, with the result being to increasing uncertainty in 
interpolations at points near to the actual measurements. 

Nearly 15 percent of the single well tests have drawdown that is below the limit of 
detection and recorded as zero. These tests clearly represent large K values and to 
discard them would introduce significant bias in the result. In the Mace dataset, these 
single-well tests have been assigned a drawdown of 0.3 m (1ft), which is thought to be 
near the limit of detection for drawdown (Mace and Hovorka, 2000). Hydraulic 
conductivities based on these wells represent a lower bound on their true hydraulic 
conductivity. Thus, the data are biased toward low values. Figure 2-3 compares the 
hydraulic conductivity distributions for the confined zone with and without the 
zero-drawdown tests. 

The location data are imprecise for some of the hydraulic conductivity data. This 
imprecision can be seen by visual examination of the data locations in Figure 2-1. Note 
that some of the measurements are arranged into horizontal lines. This is thought to be 
caused by imprecise recording of well location in driller's records. The net effect of this 
location imprecision is to mask spatial correlation similar to that described in the 
principal limitation 1. 
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Figure 2·3. Distribution of hydraulic conductivity K on base-10 logarithmic scale for the 
confined zone with and without the zero drawdown wells. Hydraulic conductivity for 
zero-drawdown wells was calculated by assuming a drawdown of 0.3 m. 
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3 REVISION 1: UPSCALING AND INTERPOLATING THE HYDRAULIC 
CONDUCTIVITY DATABASE 

To produce Revision 1 of the hydraulic conductivity model, a simulation approach was 
developed that addresses data interpolation and the issue of scale consistency in hydraulic 
conductivity. Data interpolation is necessary because the grid blocks used in the groundwater 
management model do not necessarily correspond to well locations where measurements of 
hydraulic conductivity are available. Scale consistency is an issue because hydraulic 
conductivity in heterogeneous formations is dependent on the scale over which it is defined. If 
local-scale (a few meters) hydraulic conductivity derived from well tests is applied unaltered to 
the 402 m (1/4 mi) grid blocks that comprise the USGS management model, it will introduce 
systematic bias towards lower conductivity values. In constructing a hydraulic conductivity 
model for the Edwards Aquifer, a geostatistical approach was combined with numerical 
simulations to address the scale dependencies and thus avoid this systematic bias. 

The geostatistical approach is outlined in Figure 3-1. As described in greater detail below, 
the procedure involves geostatistical analysis of the local scale hydraulic conductivity K, 
unconditional stochastic simulation of K, numerical flow modeling to generate grid block 

scale hydraulic conductivity K , geostatistical analysis of the K , and cokriging of K with 
the local-scale K data. 

3.1 Geostatistical Analysis 

The first step in the process is geostatistical analysis of the local-scale conductivity K to 
establish models for the univariate distribution and the spatial correlation. The confined and 
unconfined sections of the aquifer were treated as separate populations, and a more detailed 
geostatistical analysis was undertaken for the confined region to better model spatial correlation 
in the extreme values of K. 

The next step is to establish a model for the two-point spatial correlation. There are several 
methods for doing this, each with its advantages and disadvantages in a given situation 
(e.g., Journal and Huijbregts, 1978; Deutsch and Journal, 1998). The most familiar approach is 
the sample semi-variogram, which is the sample semi-variance as a function of lag (separation) 
distance. The sample seml-variogram of some random field Z(u) is computed as 

1 
N(h) 

f(h) = 2N(h) ~,[~u.)- ~u. +h)]' (3-1) 

where hIs a lag (separation) vector, z(u0 ) is the datum value at location u0 , and N(h) is the 
number of pairs of data separated by the vector distance h. The semi-variogram has a simple 

relationship to the two-point spatial covariance, (Z(u)Z(u +h)}- (Z(u))(Z(u + h))where 
angle brackets denote statistical expectation, but is more robust against regional trends in 
the data. 
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An alternative approach is to calculate the sample nonergodic covariance 

1 .V(h) 

C(h) = N(h) ~I z(uu}z(ua +h)- m~ (3-2) 

or the closely related nonergodic correlogram 

p{h)= c~~) 
(Jh 

(3-3) 

Here mh and cr~ are the sample mean and sample variance of the N(h) data pairs, which 
need not be the same as the mean and variance of the entire population. The correlogram 
ranges between -1 and 1 with the value 1 corresponding to perfect correlation; the value zero 
corresponds to the uncorrelated situation. 

The semi-variogram is the most widely used measure of spatial correlation. However, it is 
particularly sensitive to two statistical features that often occur in combination in hydrological 
data: heteroscedasticity and clustering of extreme values. The term heteroscedasticity refers to 
the situation when the local variability of the data is related to the local mean, or more generally, 
changes over the study area. When this occurs in combination with clustering of data, spatial 
correlation as measured by the semi-variogram, is often masked. The nonergodic correlogram 
is preferred in such situations, as It is known to be robust against these statistical artifacts 
(Deutsch and Journal, 1998). 

It is advantageous to apply these measures of spatial correlation not to the original K data, 
but to some transforms of K. For example, it is common to calculate the semi-variogram or 
correlogram for the logarithmic transforms Y = ln(K). Another powerful technique is to apply 
the semi-variogram or correlogram to indicator transforms. The indicator transform at a given 
cutoff value is obtained by replacing those values above the cutoff with a 1 and those below 
with a 0. By repeating this process for several cutoff values and calculating the variogram or 
correlogram for each, it Is possible to develop a nonparametric model for the spatial correlation. 
Such an Indicator model contains much more information than a traditional semi-variogram 
model, and is preferred if enough data are available. In particular, an indicator model is better 
in reproducing spatial correlation in the tails of the distribution, which controls upscallng. 

Omnidirectional indicator correlograms for the confined region K are shown in Figure 3-2 for 
five cutoff values corresponding to the 1 .. , 2nc1, Slh, 8" and 9111 decile. The fact that these 
correlograms are nonzero for nonzero lag distances means that significant spatial correlation 
exists for all cutoff values. For these data, the indicator correlograms for the 1111 decile are 
larger than the corresponding ones for the median or upper cutoffs. This suggests that low 
values of K are better correlated spatially than the large values. The fact that all of these are 
significantly less than 1 as lags approach 0 is a manifestation of the nugget effect. A nonzero 
nugget value means that K measured in two closely spaced wells would be imperfectly 
correlated due to the effects of very small scale variability or measurement errors. 
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Figure 3·2. Omnidirectional indicator correlograms for hydraulic conductivity in the 
confined region of the Edwards Aquifer compared with fitted correlation models. A 
nonzero value for the correlation coefficient at a given lag Indicates spatial correlation. 
Significant spatial correlation Is seen for all threshold values, but Is stronger for the lowest 
thresholds. Correlation does not go to 1 at 0 lag because of the nugget effect. 
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The solid curves in Figure 3-2 are fitted correlogram models. The indicator correlogram for 
each cutoff is well fitted by a nested exponential model of the form: 

p(h} = p1 exp(-:} p2 ex~-:J (3-4) 

where 3 ~.1 and 3 ~ are the practical correlation ranges, p1 and p2 quantify the relative 
contributions of the two correlation structures, and 1-p1-p2 is the relative nugget value. Values 
for each cutoff are summarized in Table 3-1. For each cutoff, the two correlation structures 
contribute roughly equally to the composite correlation structure. The short correlation range is 
2.1-3.6 km, depending on the cutoff value, and the long correlation range is 15 km except for 
the first decile, which has a practical correlation range of 21 km. 

The indicator semi-variogram for the 9111 decile is shown for comparison purposes in Figure 3-3. 
The semi-variogram is constant for all lags except for random fluctuations. This suggests no 
spatial correlation in the upper 10 percent of the K distribution, as opposed to the correlogram 
in Figure 3-2, which shows significant spatial correlation. Careful review of the data suggests 
that this apparent discrepancy is caused by mh and alh being different for small and large lags, 
a statistical feature that Is known to mask spatial correlation. There are two possible causes for 
the m h and a: h being different for small and large lags: heteroscedasticity and sampling bias. 
Sampling bias is likely in this dataset, as a landowner that drills an unproductive well is likely to 
try again on the same property. This type of biased sampling may alter the statistics of closely 
spaced wells compared with the general population. Whatever the cause, the correlogram is 
robust to this statistical feature and picks up spatial correlation that would have been 
overlooked using the traditional semi-variogram. 

The data from the unconfined zone are too few to support an indicator model and a traditional 
sample semi-variogram was calculated for Y = ln(K) instead. The results are shown in 
Figure 3-4. Although noisy due to the small sample size, the seml-varlogram does show 
significant spatial correlation at small lag distances. A spherical semi-variogram model with 
range of 15 km provides a reasonable fit. 

Table 3-1. Parameters In Indicator correlation models fitted to confined-zone K data 

First Second Relative Relative 
Correlation Correlation Contribution Contribution of 
Range 3A1 Rangel~ of First Second 

Threshold (meters) (meters) Structure p1 Structure p2 

151 decile 2100 21000 0.40 0.22 

2nd decile 3600 15000 0.30 0.30 

5111 decile (median) 3600 15000 0.25 0.25 

slh decile 3600 15000 0.30 0.30 

g~t~ decile 3000 15000 0.20 0.20 
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Figure 3-3. Omnidirectional Indicator semlvarlogram for the gth decile threshold of 
hydraulic conductivity In the confined zone. No spatial correlation Is evident In this plot. 
Spatial correlation is masked by the statistical artifacts discussed in the text. The 
correlograms shown in Figure 3·2 are Insensitive to this effect. 
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Figure 3-4. Omnidirectional traditional semivariogram for Y=Ln[K] in the unconfined 
zone. The fitted model semivariogram Is a spherical model with range of 15000 m and a 
relative nugget of 0.3. The traditional semivariogram was used for the unconfined zone 
because the data from this region are too few to support an indicator model. 
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3.2 Upscaling from Local to Block Scale 

Having established geostatistical models for the confined and unconfined zones which are 
valid for the scale of the well test data, the next step is to upscale to the 402 m x 402 m 
(1/4 mi x 1/4 mi) scale of the grid blocks used in the USGS management model. Upscaling in 
this context means calculating or estimating the univariate distribution of the block-scale 

hydraulic conductivity K , and a spatial cross-correlation between Y = InK and Y (the block
to-point cross correlation). Note that the block-to-block correlation is not needed because we 

have no direct measurements of K to match in the interpolation. 

For the confined zone, unconditional stochastic simulations of K were obtained using the 
sequential indicator simulation method as implemented in the SISIM module of the GSLIB 
{Version 2.1) system (Deutsch and Journal, 1998). This approach does not presume a 
multigaussian model, and is able to better represent random fields with connected regions of 
high or low K. Twenty realizations with 20 x 2000 cells in each were generated. Each cell has 
dimensions of 20 m x 20 m. The geostatistical model frt to the Y data is presumed valid at this 
scale, because the original well test data support scale (the local scale), from which the 
geostatistical model was derived, is of comparable size. 

To obtain realizations of the K , each of the 20 x 20 cell subregions (corresponding to the 
402 m x 402 m (1/4 mix 1/4 mi) grid block planned for the USGS management model) were 
successively removed from the simulated K fields. A head gradient was applied across each 
subregion in the x-direction with no-flow conditions on the other two sides, and the resulting 
head calculated using a finite-difference code. Because the fitted geostatistical model is 
isotropic, numerical flow experiments are required for only one direction. Once the head 
solution was obtained, the total flux through the subregion was calculated, and then converted 
to an effective hydraulic conductivity by dividing by the magnitude of the applied gradient. This 
procedure was repeated for each subregion in each realization. The result Is simulated 

realizations of the K field. 

These simulated K fields were then analyzed statistically. The geometric mean of K is 

increased by 65 percent and the log-variance (variance of Y = InK ) is decreased by a factor 
of 32 percent compared with the local scale values. The increase in geometric mean with 
increasing scale is consistent with previous studies of hydraulic conductivity in the Edwards 
Aquifer (Halihan, et al., 2000). This scale-dependency is explored further in Section 5. A 

cross-covariance model was also fitted to model the joint variability between the Y and Y 
variables, which is needed in the cokriging step. The cross covariance (not shown) Is well 
approximated by models of the form of Eq. (3-4 ), with practical correlation ranges 3A.1 = 2, 700 m 
and 3A.2 = 15,000 m. 

For the unconfined region, unconditional simulations of K were obtained using the sequential 
gaussian simulation method as implemented in the SGSIM module of GSLIB (Deutsch and 
Journal, 1998). The remaining procedure was the same as for the confined region. The 
upscaling procedure increased the geometric mean K for the unconfined zone by 74 percent 
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and decreased the log-variance by 29 percent. As with the confined zone, a block-to-point 
cross covariance model was fitted. 

3.3 Cokriging Block Data Based on Local Data 

The next step is to estimate the grid-scale conductivity based on the local-scale conductivity 
measurements. For this step, the log-transformed variables are used. Cokriging provides the 

best estimate of a spatially distributed variable ( Y in this case) based on some correlated 
secondary measurements (Y data from the Mace dataset). The result y. is the best estimate 

of InK at each grid block in the management model. The result also provides the kriging 

variance u 2 
, which quantifies the uncertainty in the y. estimate. These two kriging results 

K 

are shown in Figures 3-Sa,b. In constructing these maps, the cokriging estimates for the 
confined and unconfined zones were merged using maps of the outcrop region provided by 
USGS. Gray areas are outside the model region. In general, y. is smaller in the unconfined 
zone as compared to the confined zone because of differences in the underlying Y distributions. 
The kriging variance is smallest near well locations, but is larger than zero even if the 
estimation point corresponds to a well location, because the well-scale and block-scale values 
are imperfectly correlated. The kriging variance is much larger in the unconfined region, 

indicating large uncertainty in the estimated K in the outcrop region. This increased 
uncertainty is due partly to differences in the Y distribution, but more so to undersampling in the 
outcrop region. 

The final step is to convert the y. to the best estimate of block-scale hydraulic conductivity. 

Since the kriging system was constructed in terms of the Y variable, the resulting kriging result 

provides y .. which is different from the natural log of the best estimate of K . The two are 

related through the kriging variance cr~ , if one assumes that the posterior distribution is 
log-normal (e.g., Journal and Huijbregts, 1978). 

Best estimates of the K field in the Edwards Aquifer are shown in Figure 3-Sc. The color 
scale is on a base-10 logarithmic scale. The largest red regions In the 'k. map corresponds 
approximately to the high permeability zone underneath San Antonio, Texas. In general, the 

expected K is slightly smaller in the outcrop region compared with the confined region, but the 
difference is smaller than for y., as the outcrop region has a larger kriging variance which 

partially compensates the lowery. in Eq. (3-5). 
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Figure 3-5. Revision 1 of the hydraulic conductivity model for the Edwards Aquifer. 
Values were obtained by co-kriging block scale quantities conditioned on well scale 
data. Grid blocks shown In gray are In the Inactive regions of the model. The color map 

In (a) represents best linear unbiased estimate for Y =InK where K Is block scale 

hydraulic conductivity In meters/day. The map In (b) shows the kriging variance for Y • 

The best estimate for K is shown on a base-10 logarithmic scale In (c). 

3·10 



4 REVISION 3: BAYESIAN UPDATING TO MATCH 
HYDRAULIC HEAD MEASUREMENTS 

Revision 1 of the hydraulic conductivity model was based only on well test data and did not 
utilize the considerable amount of hydraulic head data existing over the Edwards Aquifer 
region. Hydraulic head data carry considerable information about the underlying hydraulic 
conductivity distribution. For the same boundary and source conditions, regions of smaller 
hydraulic gradient imply larger hydraulic conductivity, for example. However, quantitative 
inference of hydraulic conductivity from hydraulic head data is, in general, difficult. Specifically, 
this inference requires the solution to an inverse problem, which is nonunique. 

Revision 2 of the hydraulic conductivity model is not described here because it is based on a 
dataset on recharge and hydraulic head that has subsequently been updated by the USGS. In 
Revision 3 of the hydraulic conductivity model, Revision 1 was taken as a starting point and 
then modified to be more consistent with measured hydraulic head data. Specifically, a recently 
developed Bayesian updating procedure (Woodbury and Ulrych, 1998, 2000) was used to 
update the hydraulic conductivity model. In this approach the nonunique nature of the inverse 
problem is explicitly acknowledged and the results are given in terms of probability distributions 
for the hydraulic conductivity in each cell. In addition, the Bayesian method allows prior 
information of various types to be incorporated into the Inversion procedure. This feature 
allowed the previous work on upscaled hydraulic conductivity to be retained and used in 
the inversion. 

4.1 Bayesian updating procedure 

Details of the Bayesian updating procedure are reported elsewhere (Woodbury and Ulrych, 
2000). Here we provide a brief qualitative description and discuss some features pertinent to 
the following discussion. The objective of the inversion is to determine the expected T field of 

the Edwards Aquifer conditioned on the hydraulic head measurements and the upscaled ln(T) 
field. Here T denotes upscaled transmissivity of the aquifer. The solution Is not unique 
because there are fewer equations than unknown model parameters. To obtain a unique 
solution to the inverse problem, a method for singling out precisely one from the infinite number 
of solutions is required. In a probabilistic approach we assume that the model is composed of a 
very large, but finite number of model parameters. The model parameters are assumed to be 
random and then we approach the inversion from the viewpoint of probability theory. Bayesian 
solutions can be sought for this problem. The solution is a model that fits the observed data 
and in some sense minimizes the deviation away from a preconceived notion of behavior of 
the field. 

Before proceeding to the groundwater inversion problem it is useful to review results from 
Bayesian linear Inversion theory. The objective Is to find a solution m to a linear inverse 
problem, 

d* = Gm+v 
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where d • is an observed data vector, m is the parameter vector to be estimated given d • , 
G is a kernel that transforms parameters into data, and v is a noise vector that represents 
measurement errors. The noise is presumed to have zero mean: that is, the measurements 
may have some uncertainty, but are unbiased. 

In the event that the probability distribution for m and the noise v are multivariate Gaussian, 
the linear inversion problem has a well known solution {e.g., Tarantola, 1987). Specifically, the 
distribution of m conditional on d * is multivariate Gaussian with mean 

where Cd is the data covariance, and s and CP are the mean and covariance form 

defined as 

E(m) = s 

and 

The vector s can be thought of as the prior mean for m and the quantity m given by 

{4-2) 

(4-3) 

{4-4) 

Eq. {4-2) is the Bayesian update. The conditional variance can also be determined, but is not 
addressed here. 

Unfortunately, groundwater flow equations in their usual form are not in the required framework 
for the linear inversion theory. If we associate upscaled transmissivity T with m , then the 
groundwater flow equations are linear in the parameter as required, but m is not adequately 

approximated as multivariate Gaussian (e.g., ln(T) is approximated as multivariate Gaussian, 

making T lognormal). Conversely, if we associate ln(T) with m , then m may be 

adequately approximated as multivariate Gaussian, but then the problem Is nonlinear and 
Eq. (4-2) is not applicable. Woodbury and Ulrych (2000) addressed this issue by employing a 
perturbation approach to the usual groundwater flow equation. The resulting partial differential 
equation is linear in ln(T) and in the form of a {linear) advection-dispersion equation and thus 

in the form required for application of Eq. (4-2). The advection-dispersion equation can be 
readily discretized by standard finite-difference or finite-element techniques. The result of this 
discretization provides the kernel G for use in Eq. (4-2). 

It should be recognized that this perturbation approach is strictly applicable only when the 
variance ln(T) is less than unity, a condition not met by our upscaled ln(T) model. However, 

perturbation approaches often provide acceptable results outside the range of applicability. The 
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performance of the Woodbury and Ulrych (2000) Bayesian updating procedure has been 

studied as part of the Master's Thesis of Jiang' using synthetic examples with ln(T) variances 

as large as 6.8. The root-mean-square error between the hidden "truth" head and the results of 
the Bayesian update was less than 5 percent of the maximum head difference in the simulation. 
The findings from these synthetic examples suggest that the Bayesian methodology can be 
applied to the automatic calibration of two-dimensional steady-state groundwater flow model 
with large variance of ln(T) . 

4.2 Computational Model 

The Bayesian updating method requires a conventional groundwater flow model as one step. 
The existing Bayesian updating code uses a finite-element grid and a corresponding 
finite-element model of the Edwards Aquifer was constructed. This finite-element model is 
based on computational grids, pumping data, and boundary conditions provided by the USGS2 

in August 2001, and on recharge data provided by the USGS in January 2002.3 However, the 
following simplifications were made in the interest of computational expediency: 

• The model is confined throughout the model region as opposed to the USGS 
groundwater management model of the Edwards Aquifer currently in development, 
which uses the confined/unconfined mode of MODFLOW. We took the aquifer 
thickness in the Edwards Aquifer recharge zone to be one-half the aquifer thickness. 
The effect of this assumption can be removed by using independent information about 
saturated thickness when converting the updated transmissivity map to 

• 

hydraulic conductivity. 

Flow from the Trinity Aquifer was neglected. Specifically, the northern boundary of the 
Edwards Aquifer is modeled as a no-flow boundary. Flow from the Trinity Aquifer is less 
than 10 percent of the total recharge4 and this approximation is thus not expected to 
significantly affect the estimated transmissivity. 

• Springs and the Colorado River were made constant head nodes. This Is a slightly 
different condition compared with the drainage and river packages employed in 
MODFLOW. However, given the large spring conductances for the major springs in the 
region, the differences between the two approaches are expected to be minor. 

To ensure compatibility between the USGS MODFLOW model and the new finite-element 
model, the finite mesh was designed so that each node is located at the center of an active 
MODFLOW cell. This mesh was optimally renumbered so that the half-band width of the global 

1
Jiang, Y. Personal communication (October 1) to S. Painter. CNWRA. Winnipeg, Manitoba, Canada: University of 

Manitoba. 2001. 

2Lindgren, R. Personal communication (August 15) to S. Painter, CNWRA. USGS. 2001. 

3Lindgren. R. Personal communication (January 15) to s. Painter. CNWRA. USGS. 2002. 

4Lindgren, R. Personal communication (August 15). 
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stiffness matrix was limited to as small as 196. The total node number of this finite-element 
mesh, which is equal to the number of active cells in the MODFLOW grid, is 87,890. Such 
compatible relation between the two models allows us to transfer data between the two models. 

4.3 Calibration Targets 

The calibration targets were 153 measurements of steady-state hydraulic head provided by the 
USGS in August 2001. The location of the head measurements are plotted In Figure 4-1: the 
color scale represents the hydraulic head value. Of the original 153 measurements, 26 located 
in regions of extreme gradient of hydraulic head were culled from the target set. These regions 
of large gradient are situated mostly along the contact between the outcrop and confined zones 
of the aquifer. They may represent true flow barriers or they may alternatively reflect an error in 
well location or elevation. Whatever the cause, the large gradient areas caused large 
numerical error in the inversion method. For that reason those data were removed from 
the dataset. If the large gradients truly represent flow barriers, then removing those data may 
cause transmissivity to be over estimated in those regions. 

Although the 26 culled data were not used directly in the inversion, they were retained for 
comparison with the calculated heads as a post-inversion validation exercise (Section 5). 
Spring flows were treated the same way. Springs were treated as constant-head nodes in the 
inversion, an approach which offers no direct control over spring discharges. Calculated spring 
discharges are compared with observed spring discharges in Section 5. 

4.4 Prior Model 

Revision 1 of the hydraulic properties model was used to set the prior distribution in the 
inversion process. Specifically, we used maps of the aquifer thickness provided by USGS in 

conjunction with the expected values of hydraulic conductivity to set the prior log {T) . This 

prior was modified in the areas immediately surrounding Comal and San Marcos Springs. The 
borehole data are too sparse to constrain the transmissivity in those areas, and the presence of 
large-discharge springs suggests that the transmissivity must be large there. The hydraulic 
conductivity in those areas was set to 6,706 m/d, roughly 1/3 of the largest value in the 
hydraulic conductivity dataset. 

A nested model with integral scales of 1 ,200 and 5,000 m (practical correlation scales of 3,600 
and 15,000 m) and a 50-percent relative nugget effect was used for the spatial covariance, 
consistent with our geostatistical analyses. The correlation function is written as 

cp (k,l) = 0.50'"0'' [exp(-_!!__) + exp(--d-)] + 0.58(k,l)ukul 1200 5000 (4-5) 

where u is standard deviation of ln(T), k and I refer to the two nodes in question, d is the 

distance between two points in meters, and o is Kronecker number: t5 = 1 , if k = I and 
t5 = 0 otherwise. For simplicity, this model was assumed to apply across the outcrop and 
confined zones even though it was developed only for the confined zone. However, the 
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Figure 4-1. Target hydraulic heads used In the Bayesian updating procedure after 
rotating Into the management model grid 
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variance in the outcrop zone, as calculated in the development of Revision 1, was used 
unmodified in Eq. (4-1). 

4.5 Results 

The result of the Bayesian updating procedure, Revision 3 of the hydraulic conductivity model, 
Is provided on the enclosed computer disk. The geostatistical estimates are of vertically 
averaged hydraulic conductivity instead of transmissivity, consistent with the required input for 
the confined/unconfined mode of the MOD FLOW code. The hydraulic conductivity values are 
defined on a 700 x 370 grid that is rotated counterclockwise by 35 degrees. The rotation is 
about the southwest corner located at 428963.81, 3133339.73 in UTM Zone 14 coordinates. 

Results are also shown in Figure 4-2. The color scale represents the logarithm of vertically 
averaged hydraulic conductivity K with warmer colors representing larger K. Locations of major 
springs and the Knippa Gap are also indicated. In general, the inversion increased K compared 
with the prior K, especially in the area just east of Knippa Gap. 

Calculated heads using the updated K are shown in Figure 4-3. The average error between the 
calculated and observed heads is 0.15 m, indicating no significant bias in the result. The root
mean-square error and the mean-average-error are 7.0 and 4.6 m, respectively. Given that 
the difference between the maximum and minimum observed head Is about 215 m, this is an 
excellent agreement. When the 26 culled heads are returned to the target set, the agreement 
is still good, as will be discussed in Section 5. 
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Figure 4-2. Revision 3 of the hydraulic conductivity model of the Edwards Aquifer obtained 
by Bayesian updating 
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Figure 4-3. Calculated hydraulic heads resulting from Revision 3 of the hydraulic 
conductivity model 
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5 PERFORMANCE OF THE HYDRAULIC CONDUCTIVITY MODELS 

The performance of the hydraulic conductivity models Is evaluated in this section. Specifically, 
Revisions 1 and 3 of the hydraulic conductivity model are input into the finite-element model 
described in Section 4, and the success at matching observed hydraulic heads and spring flows 
is evaluated. For comparison purposes, a simple hydraulic conductivity model created by 
kriging without upscaling is also included. In addition, the results are compared with empirical 
trends relating average hydraulic conductivity to scale of investigation. This section is intended 
to quantify the improvement obtained in the hydraulic conductivity model over a basic spatial 
interpolation of the Mace (2001) dataset. 

5.1 Scale Dependence 

One of the key goals of this project was to address the dependence of hydraulic conductivity on 
spatial scale of investigation. It has been noted previously (Halihan, et al., 2000) that effective 
hydraulic conductivity in the Edwards Aquifer tends to increase with spatial scale of support. 
Specifically, the geometric means from core measurements, single well tests, and calibrated 
groundwater models as compiled by Mace (2001) form a nearly straight line when plotted 
against spatial scale on a double logarithmic plot. Neglecting this scale dependence would 
have introduced significant bias in the resulting hydraulic conductivity map. The geometric 
means of Revisions 1 and 3 of the hydraulic conductivity model are shown on the same type 
plot in Figure 5-1. The upscaling procedure underlying Revision 1 increased the geometric 
mean hydraulic conductivity by 67 percent over that of the Mace (2001) dataset, as the spatial 
scale is increased by a factor of 20. This increase with increasing scale is consistent with the 
previously identified trend, but is below the trend line. The Bayesian updating procedure 
increases the geometric mean to about 46 m/d, which corresponds to a factor of 7 increase 
over that of the Mace dataset. This value of 46 m/d for the geometric mean is close to the 
previously identified trend line, which provides confidence in the result of this study. It is 
emphasized that this Increase was accomplished without resorting to ad-hoc adjustment of the 
hydraulic conductivity distribution. 

5.2 Match to Hydraulic Heads and Spring Flows 

Revisions 1 and 3 were input into the finite-element groundwater flow model described in 
Section 4, and the resulting hydraulic heads and spring flow rates were compared with 
observed values. A hydraulic conductivity model created by spatially interpolating (kriging) the 
Mace (2001) dataset with no upscaling was also input into the groundwater flow model, for 
comparison purposes. The target hydraulic head dataset included 153 measurements (i.e., the 
26 that were removed for the Bayesian Inversion are reintroduced In this validation exercise). 
Springs were modeled by fixing the hydraulic head at the spring locations and calculating the 
discharges. The hydraulic head in the vicinity of San Antonio Springs is lower than the spring 
elevation in all the models; therefore, discharges from this spring were ignored (i.e., the spring 
is dry in the simulations). 

Calculated versus observed heads are plotted in Figure 5-2. Quantitative measures of the 
agreement between the calculated and observed heads are provided in Table 5-1. The 
improvement obtained in this work can be seen by comparing Figure 5-2a with Figure 5-2c. 
The hydraulic conductivity model obtained by kriging produces significant error in the predicted 
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Figure 5·1. Geometric mean hydraulic conductivity (meters/day) versus scale of 
support for the Edwards Aquifer. The geometric mean generally Increases with 
Increasing scale of support (averaging volume) because of multiple-scale 
heterogeneity. The geometric mean of the upscaled hydraulic conductivity obtained In 
this study through numerical simulation is consistent with the general trend. The other 
geometric means are as compiled by Mace (2001 ). 
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Table 5·1. Improvements in hydraulic head error obtained in this project. The total 
head drop across the region is about 250 meters. Values are In meters. 

Kriged K, Revision 1, Revision 3, 
No upscallng Upscaled/Cokrlged Bayesian Update 

Mean error - 12.9 -3.9 1.2 

Root-mean-square error 26.1 17.2 8.2 

Mean-absolute-error 17.5 12.5 6.0 

Maximum error 84.2 45.9 48 

hydraulic heads. In particular, there is a large spread and a significant bias in the heads 
produced by the kriged model. These errors are reduced greatly in Revision 3; the mean error 
is reduced by more than a factor of 10, and the mean absolute error is reduced by a factor of 3. 
For Revision 3, the mean absolute error is 6 m, which is roughly 2.5 percent of the total head 
drop across the Edwards region, representing excellent agreement. This excellent agreement 
between calculated and observed heads clearly demonstrates the utility of the automatic 
calibration techniques applied in this work. 

Obtaining a groundwater model fully calibrated to spring flows in not within the scope of the 
present project. Such a calibration will be accompli~hed by the USGS once the model inputs on 
recharge, pumping and boundary conditions are finalized. Therefore, no significant attempt 
was made to match spring flows. Nevertheless, Revision 3 of the hydraulic conductivity model 
still produced significant improvements in the spring flows as compared with the kriged model 
(Table 5-2). Specifically, the spring discharges in the down-gradient regions are roughly 
consistent with the calibration set, with the main exception being San Antonio Spring, which is 
dry in the simulations. Flow 111t Leona Spring is also significantly larger than the calibration 
value of 0.425 m3/s. However, this discharge rate does not account for the potentially large 
losses into the highly permeable Leona Gravel formation. For this reason, no attempt was 
made to match discharge at Leona Spring. 

Table 5·2. Improvements in calculated spring flow obtained In this project. Values are 
spring discharges In cubic meters per second. 

Krlged K, Revision 1, Revision 3, Calibration 
No Upscallng Upscaled/Cokriged Bayesian Target 

Update 

San Marcos 0.584 0.478 2.24 4.22 

Co mal 6.91 6.55 7.62 9.34 

San Antonio o· 0* o· 0.283 

San Pedro 6.24 3.68 0.325 0.181 

Leona 4.06 3.40 4.76 0.4251 

"Hydraulic head at node corresponding to spring Is less than spring elevation. Spring is not flowing. 
t Does not Include losses into Leona Gravel Formation. May be significantly less than true discharge from 
Edwards Aquifer. No attempt was made to match this value. 
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6 PROPOSED APPROACH FOR REFINING THE HYDRAULIC 
CONDUCTIVITY MODEL 

One of the main products of this work is the development of a general quantitative framework 
that makes it possible to combine various types of data. We used a Bayesian approach to 
combine data on aquifer thickness, boundary conditions, recharge, pumping rates, spring 
discharge rates, observed hydraulic heads, and well-derived transmissivities in a self-consistent 
manner that honors the physics of groundwater flow. The Bayesian methodology also has the 
flexibility to incorporate some types of geological information. In this section, we outline 
approaches that could be used to further refine the hydraulic conductivity model. 

The first suggested refinement is to incorporate the latest data on boundary conditions and 
recharge from the evolving USGS effort. The final properties model utilizes a preliminary 
dataset on recharge that has subsequently been refined by the USGS. To expedite the model 
development, inflow from the Trinity aquifer was also neglected and a crude approximation was 
used for the saturated thickness in the outcrop zone. Now that the computer codes are in 
place to accomplish the Bayesian inversion, these refinements could be made with modest 
additional effort. 

The second suggested refinement is to employ a finer computational grid in regions of large 
hydraulic gradient. As was noted in Section 5, the approximations underlying the Bayesian 
methodology break down when the hydraulic gradients become large. Large hydraulic 
gradients can occur near pumping wells and in regions of low hydraulic conductivity. It was 
found empirically that good results are produced if the head difference between two adjacent 
computational cells is sufficiently small. This condition is not met over all regions of the model 
grid, but acceptable results could still be achieved by simply removing hydraulic head data 
associated with very high gradients. This data culling has the effect of spreading in space what 
would otherwise be narrow flow barriers. When viewed at sufficiently large scales, the resulting 
smearing of the low hydraulic conductivity features does not appear to significantly affect the 
flow. However, It does introduce potential errors in the calculated water levels near the 
features. This inaccuracy In regions of high gradient is not a fundamental limitation and could 
be eliminated by simply refining the computational grid. Specific areas that could benefit from 
grid include the areas around Comal and San Marcos Springs, and the contact between 
outcrop and confined regions. 

An additional refinement could be made by incorporating geological information on the location 
of potential conduits. This information is straightforward to include within the Bayesian 
framework by modifying the prior distribution. The prior distribution represents the best guess 
at the hydraulic conductivity map prior to enforcing the constraints on hydraulic heads, and 
could include expert judgment on the location of high or low permeability zones as one 
component. Indeed, we took a preliminary step down this path by enhancing the prior hydraulic 
conductivity in the areas around Coma/ and San Marcos Springs. The specific approach would 
be to add zones of enhanced conductivity corresponding to mapped conduits. Uncertainty in 
the position of these conduits would be included by assigning a finite width to the high 
conductivity zones. The Bayesian updating procedure would then adjust the values of hydraulic 
conductivity in these zones to be consistent with the measured hydraulic heads. 
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7 CONCLUSIONS 

The successive improvements in the performance of each refinement of the hydraulic 
conductivity model, as demonstrated in Section 5, clearly show the utility of adopting a formal 
statistical approach to parameter estimation. Such an approach minimizes subjective input and 
manual adjustment of the hydraulic conductivity model, thereby maximizing defensibility against 
external challenges. 

A fully calibrated model was not one of the original goals of the project, and will be addressed 
using conventional hand calibration by USGS staff. Nevertheless, a partially calibrated model 
was achieved, which provides an excellent starting point for transient calibration. In addition, 
with additional refinements outlined in Section 6, the approach could be used to do fully 
automatic calibration, at least in steady state. 

These results also provide some insights into the relative value of different types of data. 
Specifically, the improved performance of the hydraulic conductivity model in going from 
Revision 1 to Revision 3 underscores the degree to which hydraulic head measurements carry 
information about the underlying areal distribution of hydraulic conductivity. Additional efforts to 
Improve and expand the database of water level measurements. through compilation of existing 
data and ongoing water level monitoring, may be the most cost-effective approach to improving 
the hydraulic conductivity model. This approach requires solution of an inverse problem, similar 
to what was achieved here, and would therefore benefit from the refinements suggested in 
Section 6. 

The specific approach adopted, a Bayesian updating procedure, has some powerful features 
that were not fully exploited in this project. Specifically, it provides a framework for merging 
direct measurements of hydraulic heads and hydraulic conductivity with semi-quantitative 
information in the form of expert judgment from geologists. This fusion of direct measurements 
with expert geological judgment is a largely unexploited approach that could greatly improve 
future revisions to the hydraulic conductivity model. 
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