

HYDROLOGIC DATA FACT SHEETS

2019

GROUNDWATER DISCHARGE AND USAGE

2019 GROUNDWATER DISCHARGE AND USAGE

Groundwater discharges from the Edwards Aquifer either as springflow or as pumping from wells. Comal and San Marcos springs, the largest and second-largest springs in Texas, respectively, are fed by the Edwards Aquifer. This springflow greatly benefits the recreational economies in New Braunfels and San Marcos, and both springs provide habitat for threatened and endangered species. Figure 1 shows locations of the major springs in the Edwards Aquifer region. Wells drilled into the Edwards Aquifer throughout the region provide water for many diverse uses, including irrigation, municipal water supplies, industrial applications, and domestic/livestock consumption.

Estimates of total annual groundwater discharge from combined springflow and pumping for the Edwards Aquifer are provided in Table 1 for the period of record (1934–2019). Annual total groundwater discharge estimates range from a low of 388,800 acre-feet in 1955 to a high of 1,130,000 acre-feet in 1992. In 2019, the total groundwater discharged from the Edwards Aquifer from both wells and springs is estimated at 884,588 acre-feet: 526,000 acre-feet as springflow and 358,588 acre-feet as pumping from wells.

The portion of discharge as springflow is estimated by measuring streamflow downstream of the springs and converting the streamflow measurements to spring discharge by subtracting any estimated contributions from surface runoff. Total annual spring discharge has varied from a low of 69,800 acre-feet in 1956 to a high of 802,800 acre-feet in 1992. Monthly springflow estimates for 2019 at each of the six major Edwards Aquifer springs are provided in Table 2.

In Figures 2 and 3, flows at Comal and San Marcos springs are shown as mean annual flows compared with the long-term historical mean annual flow rate for the available period of record. The 2019 mean annual flow rate was greater than the historical mean discharge at both Comal Springs and San Marcos Springs.

Discharge as well pumping can be classified as either reported or unreported discharge. Reported discharge refers to water pumped from the aquifer by a person or entity holding a groundwater withdrawal permit. These users, who are typically larger quantity users, meter their withdrawals and report the totals to the EAA. Unreported discharge refers to use that does not require a groundwater withdrawal permit from the EAA, such as domestic, livestock, or federal facility use. Unreported discharge is estimated based on numbers of wells and statistical estimates of per-well usage. In 2019, unreported discharge for domestic and livestock wells was estimated at 14,174 acre-feet, and non-reporting federal facility discharge was estimated at 5,394 acre-feet, for a total of 19,568 acre-feet of unreported discharge. Reported discharge totaled 339,020 acre-feet. The total of all reported and unreported pumping discharge is 358,588 acre-feet.

Table 3 provides a summary of well and spring discharge for 2019 based on type of use and county. The distribution of discharge from springflows and the different types of pumping for 2019 is shown graphically in Figure 4. Total annual discharge from pumping and springflow are compared in Figure 5 for the period of record from 1934–2019. The years

when springflow exceeds pumping tend to be wet years when pumping demand is lowered by more frequent rainfall and higher aquifer levels produce increased springflows. Conversely, during dry years pumping tends to exceed springflow due to increased municipal and agricultural demand and lower aquifer levels. Since 1997, however, the increase in pumping demand during dry years has been limited by the withdrawal permit system and critical period pumping reductions implemented under the Edwards Aquifer Authority Act. Table 4 provides a historical list of total annual discharge by type of use for the period 1955–2019.

Figure 1. Major Springs in the Southern Segment of the Balcones Fault Zone Edwards Aquifer

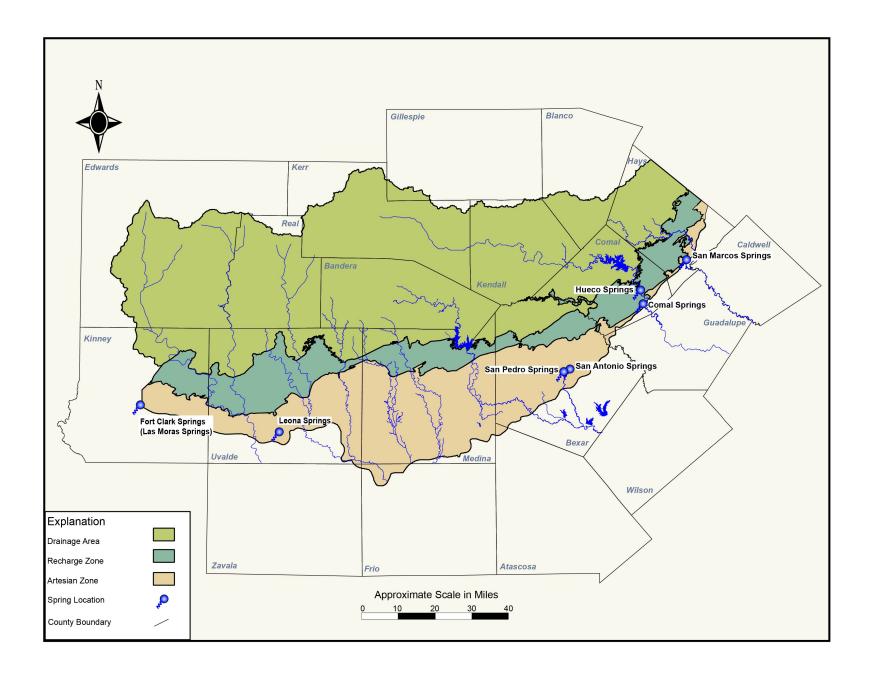


Table 1. Annual Estimated Groundwater Discharge Data by County for the Edwards Aquifer,

1934–2019 (measured in thousands of acre-feet)

Total Total

							Total	Total
Year	Uvalde ^a	Medina	Bexar ^b	Comalc	Hays	Total	Wells	Springs
1934	12.6	1.3	109.3	229.1	85.6	437.9	101.9	336.0
1935	12.2	1.5	171.8	237.2	96.9	519.6	103.7	415.9
1936	26.6	1.5	215.2	261.7	93.2	598.2	112.7	485.5
1937	28.3	1.5	201.8	252.5	87.1	571.2	120.2	451.0
1938	25.2	1.6	187.6	250.0	93.4	557.8	120.1	437.7
1939	18.2	1.6	122.5	219.4	71.1	432.8	118.9	313.9
1940	16.1	1.6	116.7	203.8	78.4	416.6	120.1	296.5
1941	17.9	1.6	197.4	250.0	134.3	601.2	136.8	464.4
1942	22.5	1.7	203.2	255.1	112.2	594.7	144.6	450.1
1943	19.2	1.7	172.0	249.2	97.2	539.3	149.1	390.2
1944	11.6	1.7	166.3	252.5	135.3	567.4	147.3	420.1
1945	12.4	1.7	199.8	263.1	137.8	614.8	153.3	461.5
1946	6.2	1.7	180.1	261.9	134.0	583.9	155.0	428.9
1947	13.8	2.0	193.3	256.8	127.6	593.5	167.0	426.5
1948	9.2	1.9	159.2	203.0	77.3	450.6	168.7	281.9
1949	13.2	2.0	165.3	209.5	89.8	479.8	179.4	300.4
1950	17.8	2.2	177.3	191.1	78.3	466.7	193.8	272.9
1951	16.9	2.2	186.9	150.5	69.1	425.6	209.7	215.9
1952	22.7	3.1	187.1	133.2	78.8	424.9	215.4	209.5
1953	27.5	4.0	193.7	141.7	101.4	468.3	229.8	238.5
1954	26.6	6.3	208.9	101.0	81.5	424.3	246.2	178.1
1955	28.3	11.1	215.2	70.1	64.1	388.8	261.0	127.8
1956	59.6	17.7	229.6	33.6	50.4	390.9	321.1	69.8
1957	29.0	11.9	189.4	113.2	113.0	456.5	237.3	219.2
1958	23.7	6.6	199.5	231.8	155.9	617.5	219.3	398.2
1959	43.0	8.3	217.5	231.7	118.5	619.0	234.5	384.5
1960	53.7	7.6	215.4	235.2	143.5	655.4	227.1	428.3
1961 1962	56.5 64.6	6.4 8.1	230.3 220.0	249.5 197.5	140.8 98.8	683.5 589.0	228.2 267.9	455.3 321.1
1962	51.4	9.7	217.3	155.7	98.8 81.9	516.0	276.4	239.6
1964	49.3	8.6	201.0	141.8	73.3	474.0	260.2	213.8
1965	46.8	10.0	201.0	194.7	126.3	578.9	256.1	322.8
1966	48.5	10.4	198.0	198.9	115.4	571.2	255.9	315.3
1967	81.1	15.2	239.7	139.1	82.3	557.4	341.3	216.1
1968	58.0	9.9	207.1	238.2	146.8	660.0	251.7	408.3
1969	88.5	13.6	216.3	218.2	122.1	658.7	307.5	351.2
1970	100.9	16.5	230.6	229.2	149.9	727.1	329.4	397.7
1971	117.0	32.4	262.8	168.2	99.1	679.5	406.8	272.7
1972	112.6	28.8	247.7	234.3	123.7	747.1	371.3	375.8
1973	96.5	14.9	273.0	289.3	164.3	838.0	310.4	527.6
1974	133.3	28.6	272.1	286.1	141.1	861.2	377.4	483.8
1975	112.0	22.6	259.0	296.0	178.6	868.2	327.8	540.4
1976	136.4	19.4	253.2	279.7	164.7	853.4	349.5	503.9
1977	156.5	19.9	317.5	295.0	172.0	960.9	380.6	580.3
1978	154.3	38.7	269.5	245.7	99.1	807.3	431.8	375.5
1979	130.1	32.9	294.5	300.0	157.0	914.5	391.5	523.0
1980	151.0	39.9	300.3	220.3	107.9	819.4	491.1	328.3
1981	104.2	26.1	280.7	241.8	141.6	794.4	387.1	407.3
1982	129.2	33.4	305.1	213.2	105.5	786.4	453.1	333.3
1983	107.7	29.7	277.6	186.6	118.5	720.1	418.5	301.6
1984	156.9	46.9	309.7	108.9	85.7	708.1	529.8	178.3
1985	156.9	59.2	295.5	200.0	144.9	856.5	522.5	334.0
1986	91.7	41.9	294.0	229.3	160.4	817.3	429.3	388.0
1987	94.9	15.9	326.6	286.2	198.4	922.0	364.1	557.9
1988	156.7	82.2	317.4	236.5	116.9	909.7	540.0	369.7

(Table 1. continued)

							Total	Total
Year	Uvaldea	Medina	Bexar ^b	Comalc	Hays	Total	Wells	Springs
1989	156.9	70.5	305.6	147.9	85.6	766.5	542.4	224.1
1990	118.1	69.7	276.8	171.3	94.1	730.0	489.4	240.6
1991	76.6	25.6	315.5	221.9	151.0	790.6	436.0	354.6
1992	76.5	9.3	370.5	412.4	261.3	1130.0	327.2	802.8
1993	107.5	17.8	371.0	349.5	151.0	996.7	407.3	589.4
1994	95.5	41.1	297.7	269.8	110.6	814.8	424.6	390.2
1995	90.8	35.2	272.1	235.0	127.8	761.0	399.6	361.3
1996	117.6	66.3	286.8	150.2	84.7	705.6	493.6	212.0
1997	77.0	31.4	260.2	243.3	149.2	761.1	377.1	383.9
1998	113.1	51.3	312.4	271.8	168.8	917.6	453.5	464.1
1999	104.0	49.2	307.1	295.5	143.0	898.8	442.7	456.1
2000	89.1	45.1	283.6	226.1	108.4	752.3	414.8	337.5
2001	68.6	33.9	291.6	327.7	175.4	890.0	367.7	529.6
2002	76.2	40.6	311.9	350.4	202.1	981.2	371.3	609.9
2003	89.4	34.8	331.7	344.7	176.3	976.9	362.1	621.5
2004	91.3	22.5	331.9	341.4	153.1	940.3	317.4	622.9
2005	107.4	37.3	366.1	349.3	175.6	1035.7	388.5	647.1
2006	107.5	64.9	289.5	216.7	87.9	766.5	454.5	312.0
2007	64.6	18.4	330.2	331.7	196.0	940.9	319.9	621.0
2008	102.0	48.8	320.4	266.6	108.0	845.7	428.6	417.1
2009	76.9	47.3	265.2	206.6	87.8	683.7	395.7	287.9
2010	53.1	36.4	298.5	312.1	162.5	862.6	372.6	490.0
2011	79.6	57.4	277.2	187.7	91.0	692.9	427.7	265.2
2012	57.6	44.3	267.5	193.4	124.2	687.0	384.7	302.3
2013	43.6	42.8	251.0	154.9	96.0	588.6	355.8	232.8
2014	41.5	43.1	230.5	114.5	97.9	527.5	332.2	195.4
2015	27.1	27.6	256.3	239.8	178.8	729.7	325.2	404.5
2016	46.9	31.9	262.6	320.7	208.3	870.3	325.3	545.0
2017	63.0	43.6	305.3	294.0	166.8	872.2	379.2	493.0
2018	69.9	42.0	277.1	244.0	130.4	763.6	370.6	393.0
2019	76.8	40.9	290.7	306.1	225.0	884.6	358.6	526.0
For per	riod of record	1934–2019:						
Median	69.3	19.7	259.6	235.1	120.3	706.9	330.8	386.3
Mean	71.2	24.4	250.2	229.3	124.5	701.7	317.4	384.4
For last	t 10 years, 201	10–2019:						
Median	55.4	42.4	272.3	241.9	146.5	746.7	364.6	398.8
Mean	55.9	41.0	271.7	222.6	139.0	747.9	363.2	384.7

Data source: USGS Letter Report to Edwards Aquifer Authority files, dated April 10, 2020.

a = As of 2008, no longer includes Kinney County discharge; prior years include 1,900 acre-feet of discharge for Kinney County.

b = Includes reports of Edwards Aquifer irrigators in Atascosa County.

c = Includes reports of Edwards Aquifer industrial and municipal users in Guadalupe County.

Differences in totals may occur due to rounding.

Table 2. Estimated Spring Discharge from the Edwards Aquifer in 2019 (measured in acre-feet)

	Leona Springs and Leona River	San Pedro	San Antonio	Comal	Hueco	San Marcos	Total Monthly Discharge
Month	Underflow	Springs	Springs	Springs	Springs	Springs	from Springs
January	3,050	901	6,500	23,600	5,020	15,700	54,800
February	2,900	783	5,130	21,100	4,180	13,800	47,900
March	3,000	758	4,640	23,300	4,780	14,700	51,200
April	2,810	605	3,180	21,500	4,480	14,200	46,800
May	3,060	740	4,530	23,300	5,570	16,700	53,900
June	2,830	659	3,590	22,100	4,440	15,600	49,200
July	2,540	620	3,180	21,300	4,290	14,000	45,900
August	2,010	246	57.2	18,400	3,330	13,100	37,100
September	2,280	191	0	18,000	2,600	11,500	34,600
October	2,470	282	160	18,200	2,180	11,000	34,300
November	2,600	400	819	19,400	1,610	10,600	35,400
December	2,660	357	682	19,300	1,270	10,200	34,500
Total	32,200	6,540	32,500	249,000	43,800	161,000	526,000

Data source: USGS letter report dated April 10, 2020.

Totals might not equal sum of discharge values because of rounding to three significant figures.

Table 3. Comprehensive Discharge Summary for Calendar Year 2019 (in acre-feet)

	Reported	d Use (permit	ted wells)	Unreport	ted Use			
County	Irrigation	Municipal	Industrial	Domestic, Livestock, and Limited Pumping*	Federal Facilities*	Total Well Discharge	Spring Discharge	Total Wells and Springs
Atascosa	1,212	0	0	0	0	1,212	0	1,212
Bexar	4,350	218,856	14,366	8,979	5,100	251,651	39,040	290,691
Comal	58	8,476	4,336	434	0	13,304	292,800	306,104
Guadalupe	0	11	213	1	0	225	0	225
Hays	147	4,027	1,271	901	294	6,640	161,000	167,640
Medina	29,086	7,152	3,516	1,187	0	40,941	0	40,941
Uvalde	38,876	2,966	101	2,672	0	44,615	32,200	76,815
Totals	73,728	241,489	23,803	14,174	5394	358,588	526,000	884,588

^{*} Federal facilities and domestic and livestock wells are not required to report annual use; these quantities are estimated. Differences in totals may occur due to rounding.

Figure 2. Historical Mean Annual Discharge at Comal Springs

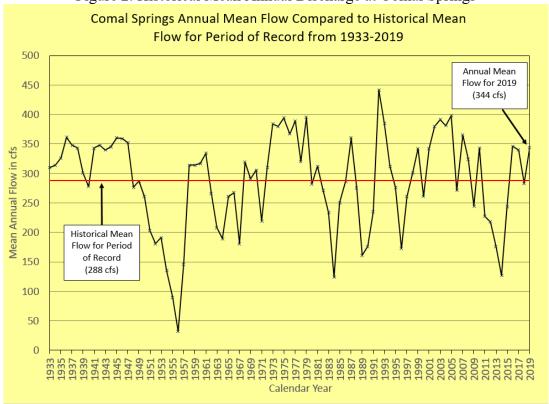


Figure 3. Historical Mean Annual Discharge at San Marcos Springs

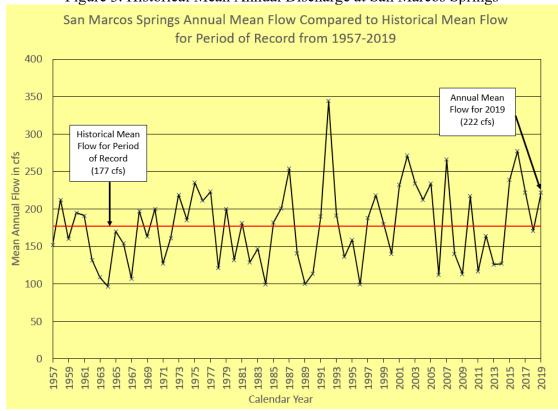


Figure 4. 2019 Discharge by Type of Use

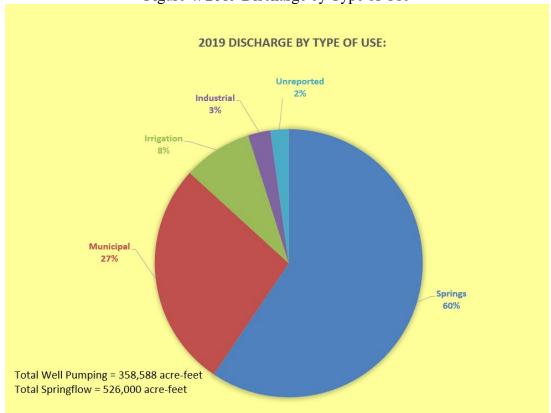


Figure 5. Groundwater Pumping Compared with Springflow

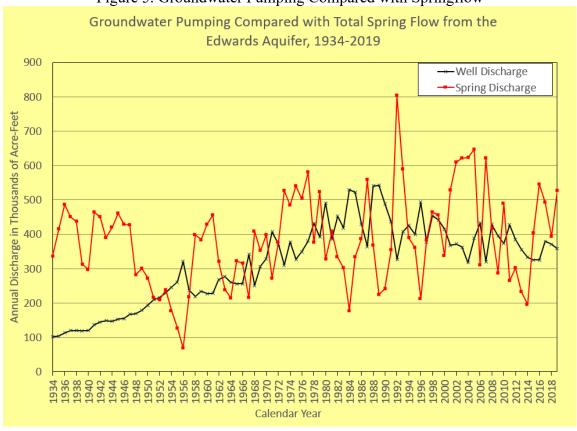


Table 4. Annual Estimated Edwards Aquifer Groundwater Discharge by Use, 1955–2018

(measured in thousands of acre-feet)

Domestic/ Industrial/

			Domestic/	Industrial/	_
Year	Irrigation	Municipal	Livestock	Commercial	Springs
1955	85.2	120.5	30.1	25.1	127.8
1956	127.2	138.3	28.9	22.4	69.8
1957	68.8	116.1	29.8	22.6	219.2
1958	47.2	113.7	33.4	25.1	398.2
1959	60.0	118.9	31.5	24.2	384.5
1960	54.9	121.1	29.1	23.3	428.3
1961	52.1	124.5	29.6	22.2	455.3
1962	72.7	143.7	28.8	22.8	321.1
1963	75.4	151.8	27.8	21.8	239.6
1964	72.6	140.2	26.3	21.7	213.8
1965	68.0	138.8	27.0	22.3	322.8
1966	68.2	141.8	23.3	22.6	315.3
1967	119.4	171.0	25.1	25.8	216.1
1968	59.3	146.9	25.5	20.0	408.3
1969	95.2	162.0	29.2	21.1	351.2
1970	110.1	167.5	29.3	22.5	397.7
1971	159.4	196.2	28.6	22.6	272.7
1972	128.8	190.5	30.8	21.1	375.8
1973	82.2	177.1	32.3	18.8	527.6
1974	140.4	174.6	33.5	15.1	483.3
1975	96.4	182.5	33.6	15.3	540.4
1976	118.2	182.1	34.6	14.7	503.9
1977	124.2	205.3	38.1	13.0	580.3
1978	165.8	214.2	40.3	11.5	375.5
1979	126.8	208.9	40.7	15.2	523.0
1980	177.9	256.2	43.3	13.7	328.3
1981	101.8	231.8	40.9	12.6	407.3
1982	130.0	268.6	39.5	15.0	333.3
1983	115.9	249.2	38.8	14.7	301.5
1984	191.2	287.2	36.2	15.2	178.3
1985	203.1	263.7	39.2	16.5	334.0
1986	104.2	266.3	42.0	16.8	388.0
1987	40.9	260.9	43.5	18.7	557.9
1988	193.1	286.2	41.9	18.8	369.7
1989	196.2	285.2	38.2	22.9	224.1
1990	172.9	254.9	37.9	23.7	240.6
1991	88.5	240.5	39.5	67.5	354.6
1992	27.1	236.5	34.8	29.0	802.8
1993	69.3	252.0	49.9	36.1	589.4
1994	104.5	247.0	33.9	39.3	390.2
1995	95.6	255.0	11.6*	37.3	361.3
1996	181.3	261.3	12.3	38.8	212.0
1990	181.5	201.5	12.5	38.8	212.0

(Table 4. continued)

			Domestic/	Industrial/			
Year	Irrigation	Municipal	Stock	Commercial	Springs		
1997	$77.4^{a/b}$	253.0	12.3	34.4	383.9		
1998	131.9ª	266.5	13.4	41.7^{b}	464.1		
1999	113.6	273.3	13.4	42.4	456.1		
2000	106.3	261.3	13.4	33.8	337.5		
2001	79.0	245.9	13.4	29.4	529.4		
2002	97.1	228.4	13.6	32.3	609.9		
2003	79.6	237.2	13.7	31.7	621.5		
2004	55.4	220.3	13.8	28.1	622.9		
2005	85.3	255.1	13.8	34.3	647.1		
2006	149.1	259.1	13.8	34.5	312.0		
2007	42.5	236.0	13.8	27.6	620.6		
2008	112.7	273.6	13.5**	28.8	417.1		
2009	108.9	247.5	13.6	25.7	288.0		
2010	72.7	259.9	13.6	26.4	490.0		
2011	124.9	265.5	13.6	23.6	265.2		
2012	90.6	257.9	13.7	22.6	302.3		
2013	76.3	239.5	13.7	26.3	232.8		
2014	75.3	220.1	13.9	22.8	195.4		
2015	42.2	247.2	13.9	21.9	404.5		
2016	54.7	232.6	14.0	24.0	545.0		
2017	74.1	268.3	14.0	22.8	493.0		
2018	84.0	250.5	14.1	22.1	393.0		
2019	73.7	241.5	14.1	23.8	526.0		
For period of record 1955–2018:							
Median	95.2	237.2	28.8	22.8	384.5		
Mean	101.2	216.8	26.2**	24.8	393.6		
For 2009–2	018 (last ten yea	ırs):					
Median	74.7	248.9	13.9	23.2	398.8		
Mean	76.9	248.3	13.9	23.6	384.7		

Data source: USGS unpublished report and Edwards Aquifer Authority files (2018). a = Includes estimates from Atascosa County discharge by Edwards Aquifer users.

b = Includes estimates from Guadalupe County discharge by Edwards Aquifer users.

* = In 1995 USGS revised the method of calculating domestic/livestock pumpage, which significantly decreased the estimated

pumping; EAA believes the post-1995 estimates to be more accurate than the previous method.

** = In 2008, EAA began to estimate domestic/livestock pumping based on number of new wells permitted annually and discontinuation of Kinney County pumping in total. Period of record mean and median only include post 2008 estimates. Differences in totals may occur due to rounding.