

North Bexar County Water Resources Study for the Edwards Underground Water District

September, 1993

Prepared by W. E. Simpson Company, Inc. in association with William F. Guyton Associates, Inc.

Final Report

North Bexar County Water Resources Study for the Edwards Underground Water District

EXECUTIVE SUMMARY

September, 1993

Prepared by W. E. Simpson Company, Inc. in association with William F. Guyton Associates, Inc.

I. Purpose and Scope

The study area of north Bexar County measures approximately 290 square miles and is bounded on the west, north and east by the county line and by the down-dip limit of the Edwards Aquifer Recharge Zone on the south. It is located in the south central region of Texas as shown in Figure 1. The study area is located within the Balcones fault zone, a region of faulted and fractured limestone. Due to the amount of fractures and faults, most streams in the area are intermittent and flow only during and immediately after rain events. Consequently, water is supplied to the study area population almost exclusively from groundwater by the Edwards and Trinity aquifers.

In 1990, the population of north Bexar County numbered approximately 27,900 with an average historical growth rate since 1960 of approximately 80 percent per decade. With limited water resources in the area, growing demand upon the Trinity aquifer is becoming a concern. This study, developed in response to the increasing demand, consists of two main portions which are presented in separate volumes.

Volume 1 was prepared by William F. Guyton Associates, Inc. It discusses ground-water conditions and the dependability, quality, and quantity of ground water that is being used within the study area for domestic, stock, public supply, industry, and

irrigation purposes. A water balance for the Trinity group aquifer is presented and areas favorable for artificial recharge and/or aquifer storage and recovery projects are identified.

Volume 2 was prepared by W.E. Simpson Company, Inc. It compares the growing demand for water in the study area with the limited groundwater supply. Volume 2 estimates future demands, establishes corresponding target supply quantities and investigates alternative water resources and their abilities to provide target supply quantities. Water quantity, quality, and the cost of resource development are considered in the evaluation. Several alternative resources are ranked accordingly and recommendations are made for further study.

The reader should note the preliminary nature of the study. All figures, except for actual test results, are estimates for helping to determine future courses of study and should not be considered as actual designs, costs, or quantities.

II. Conclusions

- A. The population count of north Bexar County was approximately 27,900 in 1990 and may increase to approximately 93,900 by the year 2020. The portion of the population in north Bexar County which uses Trinity water numbered approximately 13,600 in 1990 and may increase to approximately 38,500 by the year 2020. Currently, this area is totally dependent on ground water.
- B. The principal source of groundwater in northern Bexar County is the Trinity group aquifer, which is comprised of three aquifer units: the upper, middle, and lower Trinity. The most productive of these three units is the middle Trinity aquifer, and it is most heavily used. The best waterbearing strata within the middle Trinity aquifer are the lower member of the Glen Rose Limestone and the Cow Creek Limestone.
- C. Pumping rates for private domestic wells usually are less than 20 gpm and pumping rates for the larger public supply and irrigation wells range from about 100 gpm to about 300 gpm. Specific capacities of the wells are generally low. Three-hour specific-capacity values determined from tests made during this study range from 0.1 gpm/ft to about 14 gpm/ft.

- D. Water levels were at high levels during the study because of record high rainfall. Water levels measured in the upper Trinity aquifer generally ranged from a few feet to a little more than a hundred feet below land surface. For the middle Trinity aquifer, depths of water ranged from about 20 feet to just over 200 feet, and for the lower Trinity aquifer, they were about 400 feet or more below land surface.
- E. Seasonal variations in water levels occur because of the fluctuations in rainfall and pumpage. For the 10 years prior to the heavy rainfall in 1991 and 1992, water levels in the middle and lower Trinity aquifer units in northern Bexar County had declined by 50 to 90 feet. Water levels in the upper Trinity aquifer for the same period reflect no major declines. However, water-level records that are available for one well in the upper Trinity aquifer indicate that a decline of about 60 feet occurred during the 1950's drought.
- F. Pumpage from the Trinity group aquifer in 1990 was about 6,350 acre-feet. More than half of the pumpage was for industrial use, slightly more than one-fourth for public supply, slightly less than one-fifth for private domestic use, and slightly more than one-twentieth for irrigation. About 5 percent of the pumpage was from the upper Trinity

aquifer, about 85 percent from the middle Trinity aquifer, and about 10 percent from the lower Trinity aquifer.

- Water from the Trinity group aquifer in the study area of G. northern Bexar County ranges from fresh to slightly saline and has a hardness ranging from hard to very hard. The best quality water is obtained from the middle Trinity aquifer. Shallow wells completed in the upper Trinity aquifer and deeper wells that do not seal off the upper member of the Glen Rose Limestone often produce water that is high in dissolved solids and sulfate. Elevated dissolved solids due to sodium chloride often are found in water from the lower Trinity aquifer. High fluoride, iron, and manganese also occur in localized areas within the Trinity group aquifer. While fluoride contents above 4 mg/l found in water from some wells in the study area can pose a health risk, constituents such a dissolved solids, iron, and manganese that exceed the Texas Department of Health's recommended maximum secondary constituents generally affect only the overall esthetics of the water.
- H. Bacterial analyses of water samples from 21 water wells showed some coliform bacteria in 11 (52 percent) of the samples. While the presence of bacteria is not desirable, and in some cases can lead to illness, it is believed to be rather common for most areas nationwide. Included in the

above analyses were four samples (19 percent) that showed high concentrations of coliform bacteria which could reflect severe contamination problems. This type of contamination is usually associated with poorly constructed wells and improper disposal or handling of animal and human wastes. The results from sampling and analyses conducted during the current study indicate that the Trinity group aquifer in northern Bexar County has not been contaminated by pesticides, fuels, or solvents. However, because of their prominent use and nature, their potential as a cause for future problems remains high.

- I. The estimated water balance for the Trinity group aquifer in northern Bexar County shows 21,800 acre-feet of water coming into the study area and 22,400 acre-feet going out of it in 1990. About 500 and 100 acre-feet of water are being taken out of storage in the middle and lower Trinity aquifer units, respectively, to make up the difference. Long-term inflow and outflow are about equal for the upper Trinity aquifer.
- J. Based on an evaluation of the 1990 water balance for the Trinity group aquifer in northern Bexar County, it is estimated that the long-term practical yield of the aquifer from existing facilities is about 5,000 acre-feet per year. Spreading pumpage out into the more remote areas of the

study area will increase the sustainable yield of the aquifer somewhat, but probably by no more than 1,000 to 2,000 acre-feet per year.

- K. Exceeding 5,000 acre-feet per year of withdrawals in northern Bexar County is expected to require taking water from storage in the aquifer, which will cause a continuing decline in water levels with increased pumping lifts, reduced pumping rates, and possible deterioration in water quality. Pumping from the aquifer in the area generally north of the study area will intercept some of the water now entering the aquifer in northern Bexar County and add to the declines of water levels caused by pumping within the study area.
- L. Overpumpage or reduction in storage of the Trinity aquifer occurred at a rate of approximately 600 acre-feet per year in 1990 and is anticipated to increase to a rate possibly as high as 5,350 acre-feet per year by the year 2020 if alternative resources are not employed.
- M. The effective yield of the Trinity aquifer for household use is reduced by poor water quality found especially in the upper and lower Trinity. Complex and expensive water treatment such as reverse osmosis and coagulation may be required to remove excess calcium, sulfates, fluorides, and

iron. Fluorides and sulfates are a health concern. Calcium and iron are aesthetic and maintenance concerns.

- N. One large surface water source located outside of north Bexar County, Canyon Lake, appears to have the available firm yield to adequately meet its current user demands and to compensate for anticipated shortruns in water in the study area. In order to obtain water from Canyon Lake, it is necessary to obtain a Water Sale Agreement from the current water rights owner or to obtain adjudication from the State.
- O. Medina Lake appears to have a firm yield of about one half of the value of the allocation set aside for the Bexar-Medina-Atascosa Water Control and Improvement District. A Water Sale Agreement with the Bexar Metropolitan Water District threatens to reduce availability further.
- P. The City of Boerne owns the water rights to virtually all of Lake Boerne's watershed. Therefore, only excess runoff is available at Lake Boerne.
- Q. A large portion of north Bexar County's surface water yield is lost to water rights for the Applewhite Reservoir/Leon Diversion Dam project.

- R. Three small potential dam sites just north of Bexar County on Balcones, Pleasant Valley and Kelly Creeks may provide an annual firm yield of at least 1,400 acre-feet.
 - S. A potential dam site on Cibolo Creek, just north Bexar County on Balcones, may intercept a safe yield of 2,650 acre-feet annually and possibly more.
- T. The availability of reusable wastewater was only approximately 230 acre-feet in 1990. Presently, reusable wastewater is not available in significant quantities.

III. Recommendations

- A. Pursuing alternative surface water resources is recommended in order to prevent detrimental storage loss in the Trinity aquifer. Top priority should be given to the Fair Oaks region where the groundwater cone of depression is creating an urgent condition.
- B. Begin further study as soon as possible to see if an Aquifer Storage and Recovery project which supplies water from Lake Boerne to Fair Oaks is feasible. Determine if treated surface water can be stored underground and recovered economically to supply peak summer demands and achieve maximum utilization of the water resources that are available for meeting the current and future needs of the area. Model watershed and reservoir to confirm the adequacy of excess runoff. Initiate discussion with Boerne and Fair Oaks officials.
- C. Initiate discussion with the Canyon Lake Water Supply Corporation and the Guadalupe-Blanco River Authority to confirm and to more precisely determine the availability of water from Canyon Lake under its existing certificate of adjudication.

- D. Initiate further study at the potential dam site on Cibolo Creek. Formally inquire of the Texas Water Commission about the amount of unallocated water available. Initiate hydrologic modeling to confirm that an adequate firm yield can be provided and to optimize the sizing of the dam. Also include a geologic analysis to determine the suitability of the location as a dam site. Consider foundation and permeability conditions and impacts upon cost.
- E. Initiate discussion with the Bexar-Medina-Atascosa Water Control and Improvement District to confirm and to more precisely determine the lack of available water from Medina Lake. If necessary, determine the impact of the Water Sale Agreement with the Bexar Metropolitan Water District upon the availability of water.
- F. Initiate further study of potential dam site on Balcones Creek, Kelly Creek, and Pleasant Valley Creek. Formally inquire of the Texas Water Commission about how much unallocated water is available. Include hydrologic modeling to confirm that an adequate firm yield can be provided and to optimize the dam sizes for the appropriate yield. Also include more developed geologic analyses of potential dam sites in order to determine their suitability as dam sites. Consider foundation and permeability conditions and impacts upon cost.

- G. Further study of the ranked alternative should include a complete cost analysis, including distribution systems, system life expectancies and costs of operation and maintenance.
- H. Although the reusable wastewater is currently of a small quantity, it should be monitored for future applications as the supply grows with the increasing population.
- I. Managing and protecting the availability of ground water in northern Bexar County is vital for the welfare of the area. Therefore, present programs in the following areas should be continued and strengthened: promotion of water conservation; proper well construction practices; waterquality and water-level monitoring networks; spacing rules for septic systems in heavily populated rural areas; proper closure and plugging of abandoned wells; and public education programs to address aquifer management and protection strategies.

Final Report

North Bexar County Water Resources Study for the Edwards Underground Water District

Volume 1 GROUND WATER

September, 1993

Prepared by William F. Guyton Associates, Inc.

TABLE OF CONTENTS

M

j L

1969

M

() | |

Volu	me 1:	
I.	INTRODUCTION	1
	A. Purpose and Scope	1 2 3 4 6
II.	GEOLOGY	8
		8 .1
III.	AQUIFER SYSTEMS	.3
IV.	OCCURRENCE OF GROUND WATER IN THE TRINITY GROUP AQUIFER	.5
	B. Hydraulic Characteristics 1	.5 .8 3
v.	UTILIZATION AND DEVELOPMENT OF GROUND WATER 2	6
		6 9
VI.	GROUND-WATER QUALITY	1
	B. Hydrochemical Facies	2 6 8 8
VII.	GROUND-WATER AVAILABILITY	12
	 Recharge from Rainfall Interformational Leakage Lateral Underflow Entering Aquifer Lateral Underflow Leaving Aquifer Lateral Discharge from Springs and Seeps and S	15 16 18 19 50
	C. Artificial Recharge	53

<u>Page</u>

.

TABLE OF CONTENTS (Continued)

[

@

酈

1900 H

쪲

Ï

P

٩

ŧ

ł.

ţ.

CONCLUSIO	NS AND	RECC	MM	EN	DF	\T]	101	1S	•	•	•	•	•	•	•	•	•	•	•	•	•	•	56
SELECTED I	REFEREN	ICES	•		•	•		•	•	•		•	•	•	•			•	-		•	•	62

TABLES (at end of Volume 1)

		Records of Inventoried Wells
Table	2.	Stratigraphic Units and Their Water-Bearing Properties
Table	3.	Geophysical Log Data and Stratigraphic Interpreta- tions for Selected Wells
Table	4.	Results of Pumping Tests
Table	5.	Estimated Pumpage for the Trinity Group Aquifer in Northern Bexar County
Table	6.	Results from Chemical and Bacteriological Analyses
Table	7.	Estimated Water Budget for the Trinity Group Aquifer in Northern Bexar County, 1990

FIGURES

(at end of Volume 1)

Figure 1.	Map Showing Location of Study Area
Figure 2.	Map Showing Location of Inventoried Wells
Figure 3.	Diagram of Well-Numbering System
Figure 4.	Surface Geology Map
Figure 5.	Structural Trends in Northern Bexar County
Figure 6.	Geologic Cross Section A-A'
Figure 7.	Map Showing Altitude of and Depth to Water Levels
rigure /.	in Edwards Aquifer, Spring 1992
Figure 8.	Map Showing Altitude of and Depth to Water Levels
	in Upper Trinity Aquifer, Spring 1992
Figure 9.	Map Showing Altitude of and Depth to Water Levels
···· 2 ······	in Middle Trinity Aquifer, Spring 1992
Figure 10.	Map Showing Altitude of and Depth to Water Levels
	in Lower Trinity Aquifer, Spring 1992
Figure 11.	Drawdown of Water Levels Caused by Pumping
Figure 12.	Graphs of Water Levels, Pumpage, and Precipitation
Figure 13.	Interference Effects Caused by Pumping
Figure 14.	Map Showing Total Dissolved Solids, Sulfate, and
rigure 14.	Chloride Content in Water from Selected Wells
Figure 15.	Trilinear Diagram Showing Inorganic Analyses for
	Selected Wells

TABLE OF CONTENTS (Continued)

P

6 M

1

ſ

ſ

P

ţ

ł

Ę

APPENDICES (at end of Volume 1)

Appendix 1.	Laboratory Reports of Inorganic Chemical Analyses
Appendix 2.	Laboratory Reports of Bacteriological Analyses
Appendix 3.	Laboratory Reports of Semivolatile Organic
••	Analyses
Appendix 4.	Laboratory Reports of Volatile Organic Analyses

I. INTRODUCTION

A. <u>Purpose and Scope</u>

This portion of the joint water-resources investigation was made to determine the occurrence and availability of ground water for the Trinity Group aquifer in northern Bexar County. The following text discusses ground-water conditions and the dependability, quality, and quantity of ground water that is being used within the study area for domestic, stock, public supply, industry, and irrigation purposes.

The work performed during this investigation included the following: (a) collection, compilation, and analysis of data relating to ground water from the Trinity Group aquifer; (b) field inventory of selected water wells to include the measurement of water levels and collection of water samples; (c) performing pumping tests on certain inventoried wells; (d) estimating the amount of ground water being produced from the aquifers; (e) identifying areas favorable for artificial recharge and/or aquifer storage and recovery programs; (f) preparation of a water balance for the Trinity Group aquifer; and (g) preparation of this section of the final report. The collection and compilation of pertinent ground-water data for this study are described in detail in the September 1992 progress report (Simpson and Guyton, 1992) entitled "Summary of Activities Completed During the First Year of the North Bexar

County Water Resource Study, " which was submitted to the Edwards Underground Water District.

General information about the geology and hydrology of northern Bexar County was obtained from numerous reports by federal, state and local agencies, universities, and consultants. These reports include, but are not restricted to, the following: Arnow, 1959; Reeves, 1967; Stricklin and others, 1971; Rose, 1972; Ashworth, 1983; and Bluntzer, 1990. The San Antonio Sheet, Geologic Atlas of Texas Series by the University of Texas Bureau of Economic Geology (1983) was utilized in studying the surface geology.

Water-well information was obtained from the files of the following agencies: U. S. Geological Survey, Texas Water Commission, Texas Department of Health, Texas Water Development Board, Edwards Underground Water District, and Bexar Metropolitan Health District. Information from the files of William F. Guyton Associates also was used in the study.

The following paragraphs discuss the results of the study and present conclusions and recommendations. Supporting tables, figures, and appendices follow the text.

B. Location and Extent

The study area has an areal extent of approximately 290 square miles in northern Bexar County as shown on Figure 1. It includes part of the Balcones fault zone that forms the

southern edge of the Edwards Plateau, and also includes most of the recharge zone of the Edwards aquifer in Bexar County.

C. <u>Population</u>

Approximately 4,050 people used Trinity aquifer water in the study area in northern Bexar County in 1960, about the time that residential development began to appreciably increase. The population using Trinity aquifer water has progressively increased since then, as is evidenced by the following approximated data, which is derived from northern Bexar County census tract information for the subsequent period of record:

<u>Year</u>	Population Using <u>Trinity Water</u>
1960	4,050
1970	5,520
1980	9,270
1990	13,640

As the population increased, additional domestic, public supply, and irrigation wells were drilled to provide water for potable use and, in more recent years, for watering new golf courses. Based on information from the Texas Water Development Board's water-use files, it appears that about 6,880 people in the study area were supplied by public water systems in 1990. Thus, the remainder of the population, about 6,760

people or about one-half the total, obtained their water from private wells.

Population projections by W. E. Simpson Company indicate northern Bexar County will have a population using Trinity aquifer water of about 20,000 people by the year 2000 and from about 30,000 to 40,000 by the year 2020. These projections are based on the historical period of record for the last four census counts and extrapolations of different projections for Bexar County populations by the Planning Division of the Texas Water Development Board and Texas A&M University. The projections are discussed more fully in the accompanying Volume 2, which was prepared by W. E. Simpson Company.

D. <u>Well-Numbering System</u>

A total of 122 water wells were inventoried during the course of this investigation. Information ascertained for these wells during the study is presented in Table 1. The locations of wells are shown on Figure 2, and the wells are identified in accordance with a numbering system based on subdivisions of latitude and longitude as shown by the diagram on Figure 3. The Texas Water Commission, the Texas Water Development Board, and the U. S. Geological Survey use a similar well identification system in Texas with the exception of the last few digits of the well identification which are unique to this study and provide greater location identification within the well number.

The first two letters of the well number (i.e. AY-68-19-9ic7) identify the county in Texas, which in this case are "AY" for Bexar County. Next, each one-degree by one-degree section of the state has been assigned a two-digit number from 01 to 89 and this becomes the first set of numbers in the well identification. Each one-degree section is further divided into sixty-four 7-1/2-minute quadrangles, numbered from 01-64, and this two-digit number becomes the second set of numbers in the well identification. Each 7-1/2-minute quadrangle is divided into 2-1/2-minute blocks, which are numbered from 1 to 9. The 2-1/2-minute block designation is the first digit in the third set of numbers (the fifth number) in the well identification.

The state system and the system used for this study differ in the third set of numbers. The state system assigns numbers sequentially as needed within the 2-1/2-minute sections regardless of location within the section. However, these numbers can only be assigned by the State. Therefore, the numbering system used for this study differs and subdivides each 2-1/2-minute section into smaller sections which form nine smaller quadrangles each time, as shown by the diagram on Figure 3. The first two subdivisions, 50-second and 16-2/3-second quadrangles, use letters "a" through "i" to

avoid possible confusion with the state identification system, and the last subdivision, 5-1/2 seconds, is given a number from 1 to 9 to locate the well within an area approximately 500 feet by 500 feet. If wells have to be located closer than this final subdivision, a decimal place is added followed by a sequential number.

As an example, well AY-68-19-9ic7 would be located in Bexar County within the one-degree section 68 and in the sequentially subdivided quadrangles as illustrated in Figure 3. If there were two or more wells within the last subdivided quadrangle, .1 (9ic7.1) would be added to the well identification to represent the first well, .2 (9ic7.2) for the second well, and continued as needed. The entire study area of northern Bexar County is located within the one-degree section 68. Thus, all the well numbers assigned in this report begin with AY-68. In parts of this report only the last six or four digits of the total well identification are used where the 7-1/2-degree quadrangle number is apparent, such as on the map of Figure 2 and subsequent maps.

E. <u>Metric Conversions</u>

The inch-pound units of measurement used in this report may be converted to metric units (International System) by the following factors:

Multiply inch-pound unit	Ву	To obtain metric units
inch (in)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
gallon (gal)	3.785	liter (l)
acre-foot (ac-ft)	1,233	cubic meter (m ³)
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m^3/s)
gallons per minute (gpm)	0.06308	liters per second (1/s)
gallons per minute per foot (gpm/ft)	0.2070	liters per second per meter (l/s/m)
degree Fahrenheit (°F)	5/9 x (°F - 32)	degree Celsius (°C)

ſ

(E

Ċ

P

ſ

ſ

II. GEOLOGY

The geologic formations that yield water to wells in northern Bexar County are sedimentary rocks consisting of terrigenous clastics and marine carbonates of the Cretaceous Period. Much older Paleozoic rocks constitute the basement beneath the Cretaceous sedimentary rocks which were deposited in the study area on a prominent topographic high known as the San Marcos platform. The outcrop of Cretaceous rocks in northern Bexar County is shown by the patterned areas on Figure 4.

A. <u>Stratigraphy</u>

Stratigraphic units and their water-bearing properties for the study area are summarized in Table 2. The following paragraph taken from Ashworth (1983) appropriately describes the stratigraphy of the water-bearing strata (parenthetical statements added by William F. Guyton Associates):

"The Trinity Group of Cretaceous age is the most important water-bearing unit in the study region (northern Bexar County). It overlies rocks of Paleozoic age and is overlain in a portion of the study region by younger rocks of the Fredericksburg Group of Cretaceous age. The Trinity Group is divided into the following formations in order from the oldest

to youngest: Travis Peak (also known as Pearsall Formation from Stricklin and others, 1971) and Glen Rose. The Travis Peak Formation is subdivided into the following members in order from oldest to youngest: Hosston Sand, Sligo Limestone, Hammett Shale, Cow Creek Limestone, and Bexar Shale and Hensell Sand."

The Hosston Sand was deposited unconformably on top of Paleozoic rocks approximately 130 to 140 million years ago after a gap in deposition through geologic time. The Hosston Sand is the subsurface equivalent of the Sycamore Sand found in outcrop to the north of the study area. The Sligo Limestone is a gradational downdip facies of the Hosston Sand, which gradually changes to limestone from sand (Stricklin and others, 1971).

The Hammett Shale, also sometimes referred to as the Pine Island Shale, lies disconformably on the Sligo Limestone and generally provides a sharp contact between the two units. The Cow Creek Limestone is comprised mostly of shell fragments, and was transitionally deposited on top of the Hammett Shale and thus produces an indistinct contact.

The Hensell Sand and Bexar Shale are part of an alluvialfan depositional sequence (Stricklin and others, 1971). The Hensell Sand consists of terrigenous sediment washed out from the Llano Uplift. The Bexar Shale, which is the more prevalent facies in northern Bexar County, is a finer grained,

gradational marine shale that was deposited at the same time as the Hensell Sand.

The Glen Rose Formation is a shallow-water limestone that forms the uppermost unit of the Trinity Group in south-central Texas. The Glen Rose Formation is divided informally into two members, lower and upper. At the top of the lower member of the Glen Rose Formation is a distinctive and persistent marker bed, which has been named the "Corbula Bed" for the abundant rice-shaped clam fossils that it contains. The upper member of the Glen Rose Formation, when weathered, creates the distinctive Hill Country "stair-step" topography (Stricklin and others, 1971).

Contact between the Glen Rose Formation and the overlying Edwards Group is generally disconformable (Rose, 1972). The limestone of the Edwards Group was deposited in a shoaling, lagoonal environment during the Fredericksburg and Washita Ages of the Lower Cretaceous, more than 100 million years ago.

J

The limestone that composes the Edwards aquifer in the San Marcos platform is divided stratigraphically into three formations, the Kainer, Person, and Georgetown Formations. These formations are further subdivided into members which correspond to eight aquifer subdivisions (Rose, 1972; Maclay and Small, 1984).

B. <u>Structure</u>

Cretaceous sedimentary rocks in Bexar County strike northeast and dip to the southeast toward the Gulf of Mexico. The dip of the rocks in northern Bexar County is between 10 and 15 feet per mile to the southeast in the downdip direction (Arnow, 1959).

The study area occupies the northern part of the Balcones fault zone in Bexar County. This fault zone is the dominant structure that forms the Balcones Escarpment at the edge of the Edwards Plateau which is generally depicted on Figure 1. All faults in northern Bexar County are located within the Balcones fault zone. The last major episode of movement in the Balcones fault zone occurred during the late Early Miocene, approximately 15 million years ago (Young, 1972).

Although most of the faults in the area trend northeast, a smaller set of cross-faults trend northwest. Most of the faults are nearly vertical, normal faults. Generally, the faults are en echelon, with the down-dropped blocks toward the southeast. Many faults are not a single sharp break as suggested by a line drawn on a geologic map, but are usually a narrow zone of shattered rocks. Because rocks on both sides of a fault are sometimes equally resistant to weathering, some faults in northern Bexar County do not result in sharp topographic relief.

Figure 5 illustrates the geologic structural trends in northern Bexar County. A geologic cross section (Figure 6), which generally parallels Interstate Highway 10, illustrates both the structural and stratigraphic relationships with regard to the Cretaceous rocks in northern Bexar County. The geologic control which was used to develop Figures 5 and 6 is given in Table 3. It should be noted that some of the well numbers used on Figures 5 and 6 and in Table 3 are not consistent with the well-numbering system used elsewhere in the report. The reason for the inconsistency is that the wells were not field inventoried by William F. Guyton Associates and are used only for supplemental geophysical data. However, most of the logs are on file with the Edwards Underground Water District/Edwards Aquifer Authority and the numbers correspond to those previously used by the District.

III. AQUIFER SYSTEMS

The following paragraph taken from Ashworth (1983) appropriately describes the organization of the Trinity Group aquifer (parenthetical statements added by William F. Guyton Associates):

"Based on their hydrologic relationships, the waterbearing rocks of the Trinity Group are organized into the following aquifer units: (a) the lower Trinity aquifer consisting of the Hosston Sand and Sligo Limestone Members of the Travis Peak Formation; (b) the middle Trinity aquifer consisting of the lower member of the Glen Rose Limestone, and the Hensell Sand (Bexar Shale) and Cow Creek Limestone (and Hammett Shale) Members of the Travis Peak Formation; and (c) the upper Trinity aquifer consisting of the upper Glen Rose Limestone. Collectively these are referred to as the Trinity Group aquifer."

The Hammett Shale is relatively impermeable and acts as a confining bed which divides the producing units of the lower and middle Trinity aquifer. The upper and middle Trinity aquifer units are divided because of water-quality differences. The upper member of the Glen Rose Limestone, which forms the upper Trinity aquifer, contains water with relatively high concentrations of sulfate. The high sulfate is caused

by the dissolving of evaporite minerals such as gypsum and anhydrite. Ground-water flow and circulation in the upper member of the Glen Rose Limestone is poor, and therefore the aquifer usually yields only small amounts of highly mineralized water to wells. The lower member of the Glen Rose Limestone contains massive reefal limestones with good permeability near its base. The lower member has much better water quality than the upper member of the Glen Rose Limestone, and in some localities, the lower member appears capable of providing large quantities of water to wells.

Throughout northern Bexar County, the upper, middle, and lower Trinity aquifer units are in hydraulic communication and collectively should be considered a leaky aquifer system even though the Hammett Shale, Bexar Shale, and upper member of the Glen Rose Limestone generally are considered to be confining beds. Where thin and remnant basal rocks of the Edwards aquifer overlie the Trinity Group aquifer in the study area, these portions of the Edwards become part of the above system. In some areas where the Edwards has been downfaulted and there is hydrologic continuity between the Trinity Group and Edwards aquifers, ground water may move into the Edwards across the fault.

IV. OCCURRENCE OF GROUND WATER IN THE TRINITY GROUP AQUIFER

A. Recharge, Movement, and Discharge

Š,

The primary source of recharge to the Trinity Group aquifer in Bexar County is from the following: (a) rainfall on the outcrop of the Glen Rose Limestone; (b) seepage from Cibolo Creek and other streams and lakes; and (c) vertical downward leakage from overlying strata. Additionally, there is some recharge from water percolating from irrigation of lawns and golf courses on the outcrop.

Ashworth (1983) estimates that recharge to the Trinity Group aquifer from rainfall is approximately 4 percent of the mean or average annual rainfall. This estimate is based on the base-flow gain in the Guadalupe River between the Comfort and Spring Branch gaging stations. The base-flow gain is shown to result from discharge of ground water from the aquifer into the Guadalupe River, and this discharge approximately equals the amount of recharge when the amount of water in storage in the aquifer does not change.

A large proportion of the water that flows in Cibolo Creek enters the subsurface along the bed of the creek between Boerne and Bulverde where the Cibolo traverses the outcrop of the lower member of the Glen Rose Limestone (Guyton & Associates, 1958). However, it has been postulated that this ground water moves near-surface and parallel to Cibolo Creek below the streambed in a localized area of highly porous Glen Rose Limestone, and it then enters the Edwards aquifer where it is downfaulted against the Glen Rose Limestone (Guyton & Associates, 1958). Thus, much of the water entering the subsurface as recharge from Cibolo Creek does not appear to reach the main part of the Trinity Group aquifer in Bexar County.

The lower water-bearing units (Cow Creek, Sligo, and Hosston) of the Trinity Group aquifer do not crop out in Bexar County but receive small amounts of water as leakage from the overlying Glen Rose Limestone. This downward leakage occurs through the relatively impermeable Bexar Shale to enter the Cow Creek Limestone and through the relatively impermeable Hammett Shale to enter the Sligo Limestone and Hosston Sand. Some downward leakage may occur along faults within the study area.

Generally, ground water in the Trinity Group aquifer moves downdip to the south and southeast into and through the study area in northern Bexar County. The horizontal component of flow into and out of the study area is influenced, for the most part, by the transmissivities of the aquifer at the study boundaries. In areas of concentrated pumping, local cones of water-level depression cause ground water to move toward the points of withdrawal from all directions.

Figures 7, 8, 9, and 10 are water-level maps for the Edwards aquifer and the lower, middle, and upper Trinity aquifers. The water levels shown on the maps generally illustrate the potentiometric surface, or height to which water levels will rise in wells constructed in the aquifers. The direction of ground-water flow is generally at right angles to the water-level contours and in the direction of decreasing altitude. Inspection of the above maps indicates that the waterlevel gradient generally ranges from 30 to 100 feet per mile, and that the vertical hydraulic gradient is on the order of 0.20 foot per foot. While detailed water-level control is limited, a small cone of impression is shown on Figure 8 and two prominent cones of depression are shown on Figure 9 by closed-loop contour lines. The cone of impression in the upper Trinity aquifer reflects water entering the upper Trinity in the area of the Dominion golf course, probably from local irrigation, and the cones of depression in the middle Trinity aquifer reflect relatively large local withdrawals of water from the middle Trinity aquifer.

The water-level measurements shown on the above maps are generally reflective of the hydrostatic head of the aquifers at the time of the measurement. However, these measurements may be influenced to some degree by prior pumping from the well for which a water level is shown or current or prior pumping from wells which may be close by, the depth at which

the well is completed in the hydrologic unit, and the method of completion, which in many cases allows a well to draw water from more than one water-bearing unit. Therefore, the conditions indicated by these measurements should be considered approximate, and minor inconsistencies between adjacent data points should be evaluated only in terms of how they apply on a regional basis.

Ground-water discharge from the Trinity Group aquifer in Bexar County occurs primarily by pumpage from wells. However, some ground water is discharged naturally from the outcrop of the Glen Rose Limestone by small springs, seeps, and evapotranspiration. As discussed earlier, discharge also occurs in the form of interformational leakage to adjacent hydrologic units, along fault planes, and through lateral movement into the Edwards.

B. <u>Hydraulic Characteristics</u>

Various hydrologic parameters are required for making a quantitative evaluation of the Trinity Group aquifer. The primary parameters are the coefficients of transmissivity (an index of the aquifer's ability to transmit water) and storage (an index of the amount of water released from or taken into storage as water levels change). One of the basic assumptions in determining these parameters from pumping-test data is that flow takes place through a homogeneous medium having the same

properties in all directions. Inspection of the water-bearing strata of the Trinity Group aquifer in Bexar County reveals joints, fractures, and preferentially dissolved rock that result in these limestones and calcareous-cemented sandstones being heterogeneous in nature. This heterogeneity deviates from the above assumptions, and may cause the data from pumping tests to reflect recharge or discharge boundaries that must be taken into consideration in evaluating the data to arrive at reasonable hydrologic parameters.

Although the basic assumptions have not been met precisely, the results from aquifer pumping tests are still applicable in a general way. In properly applying the results, however, one must be mindful of their limitations and take into consideration the physical characteristics of the aquifer.

The results of 10 Trinity Group aquifer pumping tests are shown in Table 4. These aquifer tests were conducted by personnel of William F. Guyton Associates in Bexar County during the current study. Data from the tests were analyzed by using the Theis nonequilibrium formula, as modified by Cooper and Jacob (1946), and described in detail in a number of hydrology textbooks, including Freeze and Cherry (1979).

Some of the pumping-test data are skewed and thus the results of analysis may not be completely representative of the respective producing unit. Well AY-68-21-2hi9 produces

from the lower and upper members of the Glen Rose Limestone. and the pumping test results indicate a low transmissivity of from 25 to 37 gallons per day per foot (gpd/ft). However, the well does not penetrate the full thickness of the lower member of the Glen Rose Limestone, which has its best producing interval near the bottom of the member. Therefore, the range of transmissivity may be more indicative of the upper member of the Glen Rose Limestone. Well AY-68-27-1ac4 is completed in the upper member of the Glen Rose Limestone. The high transmissivity values of 19,171 and 24,400 gpd/ft determined from this test are believed to reflect the presence of a recharge boundary because of water leakage from a stream that was flowing about 100 feet from the well prior to and during the test. Thus, the high transmissivity is not considered representative of the upper member of the Glen Rose Limestone.

Based on the results of the pumping tests, and taking into consideration the general physical characteristics of the aquifers, it appears the following short-term coefficients of transmissivity are reasonable: (a) on the order of 300 to 1,000 gpd/ft for the lower Trinity aquifer (Sligo and Hosston) in Bexar County; (b) on the order of 1,000 to 10,000 gpd/ft for the middle Trinity aquifer regionally with values possibly ranging up to 35,000 gpd/ft or more locally; and (c) from less than 100 to about 3,000 gpd/ft for the upper Trinity aquifer. The values for the upper Trinity aquifer commonly are low because it is relatively impermeable in most areas. Regionally, these values can be expected to be substantially lower than those for the middle Trinity aquifer.

The confining beds of the Trinity aquifer (Hammett Shale, Bexar Shale, and the clays and marls of the upper member of the Glen Rose Limestone) are relatively impermeable. Based on the character of these materials and a comparison with similar materials elsewhere, it appears that a vertical permeability on the order of 0.001 to 0.02 gallons per day per square foot (gpd/ft²) is appropriate for vertical leakage. This estimate is in general agreement with estimates made by others (Morris and Johnson, 1966; Ashworth, 1983).

The coefficient of storage is a measurement of an aquifer's ability to store or release ground water from storage. In order to accurately determine storage coefficients from pumping tests, measurements of water levels in one or more observation wells during the tests are required. However, the two tests that were arranged with observation wells during the current study produced unacceptable results (Simpson and Guyton, 1992). In one test, the owner's measuring equipment on the observation well malfunctioned during the testing. During the testing of another well, the observation well did not show interference effects possibly because of a local restriction in the aquifer between the wells. It was not

possible to arrange for observation wells during the other pumping tests.

Artesian aquifers generally have storage coefficients ranging from about 0.00001 to 0.001 and water-table aquifers from about 0.01 to 0.25. Some variation in storage coefficients is to be expected with regard to the Trinity aquifer in Bexar County, but, for the purposes of this study values of 0.0001 and 0.03 seem reasonable for the artesian and watertable portions of the Trinity Group aquifer, respectively.

Coefficients of transmissivity and storage may be used to estimate the future drawdown of water levels caused by pumping. Figure 11 shows the relationship of the decline in water levels with time of pumping and distance from the pumped well for a range of aquifer coefficients for the Trinity Group aquifer. The graphs are based on a well pumping 100 gallons per minute (gpm) from 1 to 50 years from a homogeneous and infinitely extensive aquifer with transmissivities ranging from 1,000 to 40,000 gpd/ft, and an artesian storage coefficient of 0.0001. For example, if the coefficients of transmissivity and storage are 10,000 gpd/ft and 0.0001, respectively, the drawdown would be about 5.5 feet at a distance of 10,000 feet from a well pumping 100 gpm continuously for one year.

In general, drawdowns associated with water-table conditions are less than those in the artesian portions of the

aquifer if the following conditions prevail: (a) the pumping rate is the same; (b) the aquifer is not significantly dewatered as water levels are lowered due to pumping; (c) there are no discharge boundaries present; and (d) transmissivities are equal. Under the above conditions, the only major difference is the storage coefficient which is on the order of 300 times greater for water-table conditions. Because of the relative lack of high pumping rates for wells in the watertable portions of the aquifer that are required to cause significant drawdowns, water-table drawdown graphs were not prepared for inclusion on Figure 11.

C. <u>Water Levels</u>

Both long-term and seasonal changes in water levels in wells completed in the Trinity Group aquifer in Bexar County are illustrated by the hydrographs shown on Figure 12. Both long-term and seasonal declines result from cones of depression that are formed by pumping. When a water well is pumped, the water levels in the vicinity are drawn down to form the shape of an inverted cone with its apex located at the well as water is withdrawn from storage and hydraulic gradients are formed to cause water to move to the well. This cone of depression in the water-level surface is shown by the upper illustration on Figure 13.

Seasonal changes in water levels are usually the result of seasonal changes in recharge and pumpage which affect the amount of ground water in storage. During dry periods natural recharge is reduced and the rate of pumping generally increases to meet increased demands. Thus, some of the water discharged from the aquifer through wells is taken from storage in the aquifer locally, and water levels decline accordingly. During periods of more plentiful rainfall, recharge increases and less pumpage is needed to meet demands. Thus, much if not all of the volume of water taken from storage during the dry period is replaced and water levels rise accordingly. Available information indicates seasonal changes in static water levels of up to 40 feet or more occur depending on distance from the center of pumping.

Long-term declines occur as long as the rate of pumping continues and the cone of depression continues to expand without intercepting a source of replenishment that supplies sufficient water to satisfy the pumping demand. This source of replenishment could either be intercepted natural discharge or induced natural recharge. If the quantity of water received from these sources is sufficient to offset the amount of water pumped, the growth of the cone ceases and a new water balance is established at a lower but generally stable areal water level.

Because of heavy rains in 1991 and 1992, water levels in the area were high at the time of the study. Water-level trends shown in Figure 12 indicate that water levels in the upper Trinity aquifer have remained relatively constant during recent years. However, during the drought of the 1950's, water levels are shown to have declined about 60 feet. Water levels in the middle and lower Trinity aquifer units experienced declines on the order of 50 to 90 feet in the 10 years prior to the recent highs of 1991 and 1992.

When more than one well is pumped, each well superimposes its cone of water-level depression on the cone created by the pumping of neighboring wells. When the cone of one well overlaps the cone of another, interference occurs, and the lowering of water levels is additive because both wells compete for water by expanding their individual cones of depression. Figure 13 is presented to illustrate the effects of interference between pumping wells. The amount of interference depends on the rate of pumping from each well, the spacing between wells, and the hydraulic characteristics of the aquifer. In areas where recharge and intercepted natural discharge are less than the amount of water pumped by wells, water is removed from storage in the aquifer to supply the difference and water levels continue to decline.

V. UTILIZATION AND DEVELOPMENT OF GROUND WATER

Prior to the 1950's, there was little development of ground water from the Trinity Group aquifer in Bexar County and total pumpage probably was less than 1,000 acre-feet per year. After the 1950's, more wells were drilled and pumpage from the aquifer increased as economic conditions changed and the suburban population increased. This increase in pumpage is illustrated by the information presented in Table 5.

Presently, public water supply and domestic wells are most densely located in numerous small subdivisions in northern Bexar County. Most of the industrial wells are located along IH 10. Large irrigation wells are used mainly to supply water for golf courses, which often are located along the flood plains of creeks in northern Bexar County.

A. <u>Existing Wells</u>

It is estimated that there are more than 2,300 Trinity aquifer water wells in northern Bexar County. Of this number, it is estimated that there are about 2,200 or more domestic wells, about 80 public supply wells, about 30 industrial wells, and about 20 large irrigation wells. Records of wells inventoried during this study, which are believed to be

generally representative of wells in the area, are given in Table 1.

Most domestic wells yield less than 20 gpm, and most of the industrial, public water supply, and large irrigation wells yield from just less than 100 gpm to about 300 gpm. As a means for reducing costs, many domestic wells are sized for small pumps and have a minimal amount of casing installed, often with limited sealing of overlying strata. This practice can lead to poorly constructed wells, and in some instances, to poor water quality.

Field observations and review of existing well records show that the two most common types of wells constructed in northern Bexar County are small-diameter drilled wells and large-diameter shallow dug wells. However, dug wells are rarely completed in the study area anymore because of low yields and potential sanitary hazards. Most of the wells that are drilled and completed in the Trinity Group aquifer range in depth from less than 100 feet to 800 feet or more, and commonly have casing diameters ranging from 4 to 12 inches. Many of these wells are completed "open hole" with only 10 to 20 feet of casing at the top.

The specific capacities (gallons per minute of produced water per foot of drawdown in the pumped well after a stated time of pumping) of most wells producing from the Trinity Group aquifer are generally low. This results in

large water-level drawdowns in pumped wells, even with small well yields. As an example, with a specific capacity of 10 gpm/ft, a well pumping 100 gpm would have a drawdown of 10 feet, whereas a well with a specific capacity of 1.0 gpm/ft pumping 100 gpm would have a drawdown of 100 feet.

Three-hour specific capacities for wells in the Trinity Group aquifer determined from tests performed during this study range from 0.1 gpm/ft to near 14 gpm/ft as shown by Table 4. Wells in the upper and lower Trinity aquifer units generally have the lowest specific capacities. Two Trinity Group aquifer wells tested during this study, wells AY-68-27lac4 and AY-68-20-4ed9.1, had specific capacities of 12.5 and 13.5 gpm/ft, respectively. The relatively high values may have been influenced by recharge from nearby usually dry streams which were flowing at the time of the test as a result of recent rains. Well AY-68-28-2hf8, which is completed mostly in the Edwards aquifer, had the highest 3-hour specific capacity of 59.25 gpm/ft.

Properly constructed wells can be completed open hole in the middle and lower Trinity aquifer units. However, the upper member of the Glen Rose Limestone contains mineralized water that is associated with two main evaporite beds. Thus, casing needs to be set through these evaporite beds and properly cemented to prevent any mineralized water that may be encountered in the overlying upper member of the Glen Rose

Limestone from entering the well. Also, because of possible caving of the Hammett Shale, it is recommended that for wells completed in the lower Trinity aquifer, casing should be set into the top of the Sligo Limestone.

B. Ground-Water Pumpage

In 1990, the total amount of ground water pumped from the Trinity Group aquifer in northern Bexar County was about 6,350 acre-feet. As shown in Table 5, about 3,260 acre-feet of the water was used for industrial purposes, about 1,700 acre-feet for public water supplies, about 400 acre-feet for large-scale irrigation, and about 990 acre-feet for private domestic use. Public, irrigation, and industrial pumpage estimates are based on an evaluation and compilation of information reported to the Texas Water Commission and Texas Water Development Board by ground-water users. The domestic pumpage was estimated by taking the census-year population in northern Bexar County not on public supply as discussed earlier in this report and multiplying it by 130 gallons per day per person. This 130 gallons per day per person compares to from 153 to 225 gallons per day per person for the city of San Antonio (San Antonio City Water Board, 1992). It should be noted, however, that this larger number for public supply in San Antonio includes water used for landscapes, golf course irrigation, and other purposes, and therefore is higher than what is used in

northern Bexar County. Estimates of domestic pumpage between census years (i.e. 1960, 1970, etc.) shown in Table 5 basically assume that changes in pumpage between census years occur at an even rate. For example, domestic pumpage in 1965 is estimated to be the average of that shown for 1960 and 1970.

Since the 1960's, industrial use of ground water has been approximately one-half or greater of the total amount of water produced from the aquifer. Pumpage from private wells for domestic use increased slightly from 1960 to 1980 and then dropped off by 1990. The increase in total population within the area has been accommodated for the most part by public water supply systems, especially in recent years. The amount of ground water pumped from the aquifer by use category for selected years from 1960 through 1990 is given in Table 5, and total pumpage is shown by a graph on Figure 12.

Because the best water quality and transmissivity occur in the lower Glen Rose and Cow Creek Limestones, the middle Trinity aquifer is the most widely used ground-water source in northern Bexar County. In 1990, the middle Trinity aquifer provided approximately 80 percent of the total water pumped from the Trinity Group aquifer.

VI. GROUND-WATER QUALITY

All ground water contains minerals which are dissolved and transported in solution. The type and concentration of the minerals depend upon the history of the water, its source, movement, and environment. Specifically, the dissolved solids depend upon the solubility of the minerals present in the rocks through which the water moves, the length of time the water is in contact with the rocks, and the chemical activity of the water. In general, the concentration of dissolved minerals in ground water increases with depth. This is especially the case where circulation in the deeper sediments is restricted by low permeability. Restricted circulation retards the flushing action of water moving through the aquifer and causes the water to become more stagnant and highly mineralized.

In general, for water to be considered acceptable for public supply or domestic consumption, the concentrations of certain constituents should not exceed Texas Department of Health recommendations. The Health Department's recommendations (effective January 1, 1991) for maximum concentrations of common inorganic constituents, which were sampled and analyzed in this study, are as follows:

Primary Standards:

Constituent	Milligrams per liter
Fluoride	4
Nitrate (as N)	10

Secondary Standards:

Constituent	Milligrams <u>per liter</u>
Chloride	300
Fluoride	2
Iron	0.3
Manganese	0.05
Sulfate	300
Dissolved Solids	1,000

As noted above, fluoride is included in both the Primary and Secondary Standards.

Often, water with concentrations higher than the Secondary Standards is consumed, especially where that is the only water available. Generally, water that contains more than 2,000 milligrams per liter (mg/l) dissolved solids is not used for human consumption. However, stock and many irrigated crops can tolerate levels much higher than the recommended drinking water standards (Hem, 1985).

A. Chemical and Bacteriological Quality

The Trinity Group aquifer in northern Bexar County generally yields water that ranges from fresh (less than 1,000 mg/l dissolved solids) to slightly saline (1,000 to 3,000 mg/l dissolved solids). This water is suitable for most domestic and livestock consumption. However, the water has limited use for some industrial purposes because of its hardness, which is often much greater than 180 mg/l as calcium bicarbonate. The best quality water in the Trinity Group aquifer is generally obtained from the middle Trinity aquifer.

The results from chemical analyses of 21 samples of ground water collected by William F. Guyton Associates during this study are listed in Table 6 and selected chemical constituents are shown on Figure 14. The laboratory reports are given in Appendices 1 through 4. Four of the wells, AY-68-19-3fel, AY-68-21-2hi9, AY-68-28-2ab6, and AY-68-28-3fb5, produced water containing more than 1,000 mg/l dissolved solids, with the water from the first three wells containing more than 2,000 mg/l dissolved solids. Samples from four wells, AY-68-21-5de8, AY-68-27-1ac4, AY-68-27-5be7, and AY-68-28-3fh5, exceed the secondary standard for fluoride at 2 mg/l. Only the water from well AY-68-28-3fh5, which contains 4.6 mg/l of fluoride, exceeds the primary standard of 4 mg/l. However, the water from this well is used only for irrigation and not for consumption.

Bacteriological samples were taken from 21 wells in the study area. The results are given in Table 6 and the laboratory reports are included in Appendix 2. Laboratory results for 11 of the samples indicate the presence of bacteria. Of

these 11 samples, those from wells AY-68-20-4ed9.1, AY-68-20-7bd6, AY-68-21-5de8, and AY-68-28-2hf8 are shown to have relatively higher numbers of cultured bacterial colonies that may reflect serious contamination. Quality assurance samples indicate that no sample contamination occurred after sampling.

According to the San Antonio Metropolitan Health Department Laboratory, the presence of coliform or streptococcal bacteria in water generally indicates that the water is probably unsafe to drink. These bacteria are easily cultured and identified and their presence in excessive numbers is considered suggestive of the presence of other potential pathogenic bacteria. Often, high concentrations of bacteria in ground water are considered to be a localized problem within the well itself or nearby, and thus not indicative of widespread contamination of the aquifer. Since nitrate is often associated with contamination from waste waters or areally applied fertilizer, the generally low nitrate concentrations of the sampled water support the opinion that the elevated bacteria probably reflect localized conditions.

Water samples from five wells, well and sample numbers 19-6eb6, 20-7hd6, 27-3bd8, 28-3fh5, and 20-7aa8, were analyzed for semivolatile organic pesticides, and samples from two wells, well and sample numbers 19-6eb6 (rerun) and 21-5de8, were analyzed for volatile organics. The laboratory reports for pesticide analyses are given in Appendix 3, and the

li.

laboratory reports for volatile organics are given in Appendix 4. Even though these wells were selected because conditions in the vicinity of the wells provided the greatest potential for the produced water to exhibit aquifer contamination of the suspect compounds, none of the target compounds were detected by the analyses.

While it is possible that these organic analyses of water from the selected wells may not conclusively represent conditions in the entire study area, it appears that water in the Trinity Group aquifer in northern Bexar County is relatively pristine with respect to these organic contaminants at this time. However, because of the high degree of surface usage and nature of organic compounds, the potential exists for future water-quality degradation by pesticides, fuels, and solvents.

The availability of earlier water-quality data for the Trinity Group aquifer in northern Bexar County is inadequate to evaluate historic changes. Analyses by the Texas Department of Health are not applicable for determining long-term changes in the aquifer because the samples usually are taken from distribution lines that contain water from multiple wells. Older analyses are available for water samples collected from wells within the study area by the Texas Water Commission, mostly during the early 1970's. However, only one well, AY-68-27-5be7, corresponds to a well sampled during the

current study. The results of analyses made as part of the current study are generally similar to the earlier analysis for well AY-68-27-5be7 and others reported by Ashworth (1983). In order to establish long-term trends in water quality for the Trinity Group aquifer, samples from individual wells need to be taken periodically through time. In addition, information such as well construction, production interval, and pumpage from the well need to be evaluated in determining whether any water-quality changes that occur pose a potential threat to the future potability of water from the Trinity Group aquifer.

B. <u>Hydrochemical Facies</u>

The trilinear Piper diagram shown on Figure 15 was generated from results of the inorganic water analyses in order to visually demonstrate major groupings or trends in water chemistry within the Trinity Group aquifer. The composition of most natural waters can be approximated in terms of three cations (calcium, magnesium, and sodium) and three anions (bicarbonate plus carbonate, sulfate, and chloride) expressed in percentage of total milliequivalents. The proportions are plotted as points in separate triangles of cation and anion constituents. These points are then projected into a central diamond shape field to identify general composition in terms of water types (Hem, 1985; Freeze and Cherry, 1979).

Most of the samples are a calcium-bicarbonate type water. Some of the samples, especially those from the upper Trinity aquifer and the most downgradient portion of the middle Trinity aquifer are calcium-sulfate type water. Water from the lower Trinity aquifer exhibits elevated sodium chloride.

Data on Figures 12 and 15 illustrate that water-chemistry differences exist in the middle Trinity aquifer between upgradient and downgradient areas within northern Bexar County. The elevated sulfate concentration in downgradient wells may be related to the total quantity of vertical leakage which enters the middle Trinity aquifer from the upper Trinity aquifer. This change in chemistry reflects the effect of less flushing and circulation, and the accumulation of the poorer quality water that leaks into the middle Trinity aquifer from above as the water moves downgradient. The straight line correlation shown by the trilinear diagram on Figure 15 illustrates the potential for such mixing.

The best-illustrated evidence of mixing of water between the lower Trinity aquifer and the other Trinity aquifer units is shown by the relative position of sample number 2 on Figure 15, as compared to the clustering of plotted points for the upper and middle Trinity aquifer data. The above correlations are believed to provide chemical evidence of a leaky aquifer system for the Trinity Group aquifer.

Sample number 3 is anomalous and plots separate from the other data points on Figure 15. There were no other wells in the lower Trinity aquifer within the study area that were available to be sampled at the time of the study. Therefore, it is not certain if this is typical chemistry for water of the lower Trinity aquifer or whether this is something peculiar to this sample. The well from which sample number 3 was collected was pumped dry three times during the sampling process, and the water level was allowed to recover each time before the sample was collected during the fourth pumping period. The well had not been used in some time, and the person looking after this well said the well had not gone dry previously. It is not known why this occurred, or what effect it had on the chemistry of the sample.

C. <u>Water-Quality Problems and Treatment</u>

The upper member of the Glen Rose Limestone (upper Trinity aquifer) contains anhydrite and gypsum deposits which result in water high in sulfate. Thus, wells completed in the upper Trinity aquifer, or those completed in the lower units which do not have the upper Trinity cased off, may produce water high in sulfate. Ground water that moves slowly and is in contact with highly soluble rocks results in high mineralization. This is a common problem for the lower Trinity aquifer. In addition some wells in northern Bexar County are

reported to produce water containing excessive concentrations of hydrogen sulfide gas, fluoride, iron, manganese, and bacteria.

Bluntzer (1990) reported that serious to moderate concentrations of nitrate with respect to health risks have been detected in the upper and middle Trinity aquifers in the Hill Country area of central Texas. High nitrate concentrations often indicate fecal or fertilizer contamination. These high concentrations seem to be limited to scattered localized areas in the Hill Country. Because of the relative lack of farmed acreage in the northern Bexar County study area, the reported high nitrate concentrations are believed to be associated with localized improper disposal of human and/or animal wastes.

Some of the problems that are manifested due to excessive concentrations of certain chemical constituents are as follows: (a) sulfates may act as a laxative on people and animals not accustomed to it; (b) hydrogen sulfide gas causes the water to have a mild to strong odor of rotten eggs and may irritate eyes; (c) fluoride may cause mottled tooth enamel, brittle bones, or hardening of ligaments; (d) iron and manganese cause stains to form on porcelain fixtures and laundry; (e) biological contaminants may cause disease; (f) nitrates may cause methemoglobinemia ("blue babies") when such water with high nitrate content is ingested by children or used in the preparation of infant feeding formulas; and (g) hardness

may be disadvantageous because soap may not clean efficiently and an insoluble residue may be left on bathtubs, sinks, clothing, and skin. A brief overview of water treatment that can correct or mitigate these problems is presented in the following paragraphs.

Water quality can be enhanced through treatment by filtration, activated carbon, dealkalization, deionization, or reverse osmosis. Some treatment procedures are relatively costly, but are available for those who can afford them. Excessive sulfate can be removed by dealkalization, deionization, or reverse osmosis. Reverse osmosis will also remove certain metals (iron, lead, etc.), organic chemicals, and nitrates. Activated carbon filters are also good for removing a number of constituents. Adequate ventilation and aeration normally can remove objectionable gas, such as hydrogen sulfide. Some commonly employed iron-removal methods are iron filtration or aeration and settling.

Hardness is caused by calcium and magnesium in ground water. Water softeners are based on the ion exchange process whereby sodium ions are traded for calcium and magnesium ions. This ion exchange process will also help remove iron and manganese.

Biological contaminants, such as bacteria and viruses, are most often effectively eliminated through chlorine disinfection. It should be noted, however, that man-made

國間 R

chlorinated hydrocarbons produced during chlorination could pose an added water-quality problem for some water systems. Water may also be disinfected with heat by bringing the water to a boiling temperature for 15 to 20 minutes.

VII. GROUND-WATER AVAILABILITY

The amount of ground water that can be pumped from the Trinity Group aquifer in northern Bexar County on a long-term basis is limited by the ability of pumping to induce additional recharge and/or intercept water moving through the aquifer to points of natural discharge. A basic step in arriving at an estimate of the amount of water that can be produced on a long-term basis involves the development of the aquifer's water balance, sometimes referred to as the aquifer's water budget. Evaluation of how changes in pumping quantitatively affect the water balance provides a means for estimating the long-term availability of water from the aquifer.

In addition to the availability of ground water under natural conditions as described above, there also is a possibility that the aquifer might be used as a storage reservoir to receive artificial recharge from an outside source for an aquifer storage and recovery (ASR) project. Such a project, if successful, allows the total water resources of an area to be more fully utilized in meeting water needs.

These aspects of ground-water availability are discussed in the following paragraphs.

A. <u>Water Balance</u>

The water balance is in essence the hydrologic equation for the Trinity Group aquifer and may be stated as inflow equals outflow plus or minus change in ground-water storage. Inflow, for the purposes of this investigation, includes natural recharge to the aquifer from precipitation, interformational leakage of ground water to the middle and lower Trinity aquifer units, and lateral underflow of ground water into the study area. Outflow from the study area includes ground-water pumpage, interformational leakage of ground water into the middle and lower Trinity aquifer units, lateral underflow out of the study area, and natural discharge from springs, seeps, etc. Each of these items as they apply to the water budget for the upper, middle, and lower Trinity aquifer units and the Trinity Group aquifer as a whole are discussed below and summarized in Table 7.

1. <u>Recharge from Rainfall.</u> Natural recharge occurs from rainfall over the outcrop area that enters the aquifer either by direct infiltration or by leakage from streams. Natural recharge was estimated by applying a percentage to the amount of rainfall that falls on the outcrop area, which in the study area includes only the lower and upper members of the Glen Rose Limestone.

The percentage of rainfall that has been accepted for use in estimating recharge for these sediments in other parts of

the Hill Country area is 4 percent (Ashworth, 1983). Because of the generally tight nature of the upper member of the Glen Rose Limestone, 3 percent of rainfall was used for the upper Trinity aquifer in the study area. Four percent of rainfall was used for the middle Trinity aquifer recharge. The annual rainfall to which these percentages were applied was 32.82 inches, which is the 88-year average at Boerne, Texas to the year 1990 (U. S. Dept. of Commerce). The percentages were applied to average annual rainfall, rather than 1990 rainfall, to help compensate for time delays the recharge may experience in reaching the aquifer. Also, the percentages applied to rainfall are long-term averages themselves and actually fluctuate with the amount of yearly rainfall.

The area of outcrop for the upper and lower members of the Glen Rose Limestone (upper and middle Trinity aquifer units in this report) that receives recharge from precipitation was measured by utilizing a geologic map of the area. The results show an outcrop area of about 167 square miles for the upper member of the Glen Rose Limestone (upper Trinity aquifer) and 12.5 square miles for the lower member of the Glen Rose Limestone (middle Trinity aquifer) in the study area of northern Bexar County. Thus, the recharge received in 1990 is estimated to be about 8,800 acre-feet and 900 acre-feet, respectively, as shown in Table 7.

2. Interformational Leakage. Interformational leakage is water that moves vertically from one unit of the Trinity Group aquifer to another, or in the case of the lower Trinity aquifer, into the underlying Paleozoic rocks. It is estimated from the area and permeability of the layers that separate the upper, middle, and lower Trinity aquifer water-bearing sections and the hydraulic gradient that exists between sections. Applicable permeabilities were estimated from the character and nature of the materials through which the water moves and generally accepted values for the respective sediments. Hydraulic gradients were estimated from analysis of how water levels varied with the depths of wells completed in the aquifer.

The area of the layer through which leakage between the upper and middle Trinity aquifer units in the study area occurs is estimated to be about 277 square miles, and the average vertical water-level gradient is 0.2. An average permeability of 0.002 gpd/ft² (clay permeability from Morris and Johnson, 1966) appears reasonable for the separating sediments when they are considered as a unit. Thus, by using these values of area, water-level gradient, and permeability, it is calculated that 3,500 acre-feet of water leaked from the upper Trinity aquifer and entered the middle Trinity aquifer in 1990. In the case of leakage between the middle and lower Trinity aquifer, it is estimated that the area through which leakage occurred is 290 square miles, the vertical water-level gradient is 0.2, and the effective vertical permeability for the affected sediments is 0.00126 gpd/ft² (Ashworth, 1983). Using these factors, it is calculated that leakage of water from the middle Trinity aquifer into the lower Trinity aquifer was about 2,200 acre-feet in 1990.

It is estimated that about two-thirds of the water entering the lower Trinity aquifer as interformational leakage or about 1,600 acre-feet of water, leaked into the underlying Paleozoic rocks in 1990. It should be noted that with the exception of the 1,600 acre-feet leaving the lower Trinity aquifer, all the interformational leakage was between units of the Trinity Group aquifer, and as a result, none of this leakage resulted in a gain of water to the Trinity Group aquifer.

3. Lateral Underflow Entering Aquifer. Water moves laterally in a downgradient direction within the Trinity Group aquifer and enters the portion of the aquifer that is present within the study area in northern Bexar County. The amount in transit is estimated from the length of the section through which water enters this portion of the aquifer in the northern part of the study area, the hydraulic gradient across the line

of entry, and the effective transmissivity for the respective section of aquifer along this line.

In the case of the upper Trinity aquifer, the length of inflow section is relatively small because the lower member of the Glen Rose Formation outcrops in Cibolo Creek along the north part of the study area. The length of the section of inflow is estimated to be about 8 miles. The average hydraulic gradient is about 50 feet per mile along this length of section based on water-level contours, and the effective transmissivity is estimated to be about 500 gpd/ft. Using these factors and best professional judgment, the amount of underflow entering the upper Trinity aquifer is estimated to be about 200 acre-feet in 1990.

For the middle Trinity aquifer, the respective factors are a length of inflow section of 26 miles, an average hydraulic gradient of about 46 feet per mile, and an estimated effective transmissivity of about 8,700 gpd/ft. Thus, the estimated underflow into the middle Trinity aquifer was about 11,600 acre-feet for 1990. The larger underflow is due mostly to a larger effective transmissivity and, to a somewhat lesser degree, to a longer section of inflow.

The estimated effective transmissivity for the lower Trinity aquifer is small, being about 500 gpd/ft. Using this transmissivity with a relatively short length of inflow section of 15 miles, due to the configuration of water-level

contours (Figure 10), and an average hydraulic gradient of 35 feet per mile, the amount of underflow into the lower Trinity aquifer within the study area in northern Bexar County in 1990 is estimated to be about 300 acre-feet.

4. Lateral Underflow Leaving Aquifer. Lateral underflow leaving the aquifer is water that moves downdip across the lower limit of the study area to other points of discharge outside the study area. The amounts are estimated the same way as underflow into the aquifer, but the values that are used for calculations are applicable to conditions along the downdip limit of the study area.

Applicable values for calculating underflow leaving the upper Trinity aquifer are estimated to be a length of outflow section of 25.5 miles, an average hydraulic gradient of about 48 feet per mile, and an effective transmissivity of 2,500 gpd/ft. This transmissivity is appreciably higher than the transmissivity along the northern boundary of the study area because of much greater saturated thickness at the southern boundary. Calculations and judgments using these values show about 3,400 acre-feet of underflow left the upper Trinity aquifer in 1990.

The length of outflow section for the middle Trinity aquifer is about 28 miles taken generally along the downdip limit of the study area, and the average hydraulic gradient is about 48 feet per mile. The effective transmissivity of the

middle Trinity aquifer along the downdip limit is estimated to be about 6,000 gpd/ft. This estimate is lower than the 8,700 gpd/ft that is estimated to apply along the northern boundary because it is believed the aquifer media become tighter and less permeable downdip. Calculations and judgments based on these numbers show that 9,000 acre-feet of underflow left the middle Trinity aquifer in the study area in 1990.

Values estimated to be applicable for calculating underflow leaving the lower Trinity aquifer are a length of section of 25.5 miles, an average hydraulic gradient of about 27 feet per mile, and an effective transmissivity of 400 gpd/ft. Using best professional judgment and these values, the underflow leaving the lower Trinity aquifer in 1990 is estimated to be 300 acre-feet.

5. Natural Discharge from Springs and Seeps. Some ground water is discharged through springs, seeps, and evapotranspiration. Most of this discharge occurs from the shallow upper Trinity aquifer, and is the result of plants intercepting the water and returning it to the atmosphere before it penetrates the aquifer to depths below the reach of roots. Discharge also results from recharge encountering essentially impermeable layers which deflect some of the water laterally to springs and seeps at topographically lower points before it has time to enter the deeper portions of the aquifer. An assessment of hydrogeologic and topographic conditions related

to the prevalence of spring and seep areas indicates that on the order of 2.5 cubic feet per second (about 1,800 acre-feet per year) is discharged from the Trinity Group aquifer in this manner on a long-term average basis. Because this water being discharged naturally is above the water table in the main part of the aquifer most of the time, lowering water levels in the aquifer will cause very little, if any, of the water to move into the aquifer as recharge.

6. <u>Pumpage.</u> Pumpage from the aquifer by type of use is discussed in an earlier section of this report and is shown in Table 5. It is estimated that total pumpage in 1990 amounted to about 6,400 acre-feet. Of this amount, about 300 acre-feet was produced from the upper Trinity aquifer, about 5,300 acrefeet from the middle Trinity aquifer, and about 700 acre-feet from the lower Trinity aquifer. Upper Trinity aquifer pumpage was estimated to be 30 percent of the estimated domestic pumpage for the total Trinity Group aquifer. Total estimated pumpage from the middle Trinity aquifer included 80 percent of the reported industrial pumpage for the Trinity Group aquifer plus 70 percent of the estimated domestic pumpage. Pumpage from the lower Trinity aquifer was estimated by assuming it was 20 percent of the reported industrial pumpage for the total Trinity Group aquifer.

7. <u>Water Removed from Storage</u>. Water removed from storage in the Trinity Group aquifer is the difference between the

amount of water that enters the aquifer and the amount that leaves the aquifer. In 1990, the amount of water entering the aquifer within the study area in northern Bexar County is estimated to be on the order of 21,800 acre-feet, while the amount of water leaving the aquifer within the study area is estimated to be about 22,400 acre-feet (Table 7). Thus, the middle and lower Trinity aquifer units had about 500 and 100 acre-feet, respectively, more water removed than was received in 1990.

Pumpage from wells accounts for a little more than a quarter of the amount of water discharged from the aquifer. Because of the low transmissivity of the aquifer, pumpage from wells cannot intercept all of the annual recharge in transit to points of natural discharge. Thus, if pumpage continues at the present rate, or at an increased rate, the aquifer will continue to experience loss of water from storage and water levels will continue to decline.

B. Availability of Ground_Water

The amount of ground water that is available from the Trinity Group aquifer in northern Bexar County on a sustained yield basis is estimated to be about 5,000 acre-feet per year. This estimate is based on the water balance discussed above and summarized in Table 7, a review of the water-level hydrographs shown on Figure 12, current water levels, and a review

of pumping and well-spacing practices utilized by the area's ground-water users. This amount of pumpage represents about one-quarter of the average annual inflow the aquifer is estimated to receive in northern Bexar County.

It would seem that much more than about 5,000 acre-feet of ground water could be pumped by wells in the study area, especially when the estimated average annual inflow to the aquifer is 21,800 acre-feet. However, it will not be possible to intercept all this inflow since most of it leaves the aquifer in northern Bexar County by underflow to downdip areas. Based on the current rate of annual pumpage (approximately 6,300 acre-feet in 1990), water-level declines generally reflect a continuing widespread gradual withdrawal of water from storage from the middle and lower Trinity aquifer units. Local cones of depression are superimposed on these areal water-level declines and, in areas where pumpage is concentrated, pumping lifts are already relatively large. The continued gradual depletion or mining of water from aquifer storage will cause pumping levels to deepen, and pumping rates with existing pumps will decrease. Also, a potential exists for poor quality water in the upper Trinity aquifer to migrate downward into the middle Trinity aquifer and degrade water quality. A greater lowering of water levels as a result of increased pumping would increase the hydraulic gradient between the upper and middle aquifer units, which would make

migration of this poor quality water a greater and more imminent threat.

In order to develop more than about 5,000 acre-feet of ground water, withdrawals from the aquifer will need to be spread out into some of the more remote areas of northern Bexar County that are at considerable distances from the current centers of pumpage in an attempt to intercept more of the underflow leaving the study area. However, it is doubtful that this somewhat radical approach of spreading out the pumpage could increase the sustainable yield from the aquifer by more than 1,000 to 2,000 acre-feet per year. Even so, groundwater users should use prudent ground-water exploration and drilling techniques, proper well construction and development techniques, and proper well spacing in the development and utilization of this resource to insure maximum well efficiencies and water-quality protection.

C. Artificial Recharge

Two types of recharge projects appear applicable to the Trinity Group aquifer in the study area. One is conventional recharge, and the other, which is more localized in application and for specific supplies, is aquifer storage and recovery (ASR). Conventional recharge projects utilize a variety of techniques to intercept surface runoff, which otherwise leaves the area, and induce it to enter the aquifer as additional recharge. The means for accomplishing this include use of recharge wells, dams and levees, excavations in permeable soils, and systems to convey floodwaters to recharge points. Geologically, a number of karst features such as caves and sinkholes exist in the lower member of the Glen Rose Limestone within the Cibolo Creek floodplain, and these may be adapted for this type of project to provide some additional recharge to the Trinity Group aquifer.

ASR systems generally treat surplus surface water to drinking water standards, and inject and store the treated water underground in an aquifer for later use. Water is usually injected during wet months and recovered from the subsurface in dry months by pumping when water supplies diminish and demands exceed the capacity of water-treatment facilities. In an ASR system, the water that is injected is intended to be recovered on site. Thus, these projects typically are local in their impact on an aquifer, and they are not intended to increase ground-water recharge over a wide region.

It appears that an ASR program may be feasible in the Fair Oaks area of northern Bexar County because of the following indicators: (a) seasonal variation in water demand from the middle Trinity aquifer, summer demands being about 1.6 times greater than average demands; (b) sizable storage space is available in the aquifer for the recharge water, possibly in the range from 2,000 to 6,000 acre-feet; and (c) storage of

recharge water during the wet months to meet peak water demands during the "dry" months probably would not need to exceed 600 to 700 acre-feet of water in a single operational cycle during the reasonably foreseeable future.

A more detailed analysis of the ASR option in the Fair Oaks area needs to be conducted with respect to the availability of recharge water, hydrogeology, ground-water quality, operating and construction costs, water rights, permitting, monitoring options, and legislation and local ordinances which can be put in place to maintain the operator's right to the recharged water. If successful, this ASR project would allow more economical and efficient use of current and future watertreatment facilities. At the same time, it would physically enhance the public water supply for northern Bexar County and provide for more complete utilization of the area's available water resources.

VIII. CONCLUSIONS AND RECOMMENDATIONS

- 1. The population using Trinity aquifer water in the study area in northern Bexar County in 1990 was about 13,640. The population is projected to grow to about 20,000 by the year 2000 and from about 30,000 to 40,000 by the year 2020. Currently, this area is totally dependent on ground water.
- 2. The principal source of ground water in northern Bexar County is the Trinity Group aquifer, which is comprised of three aquifer units, the upper, middle, and lower Trinity. The most productive of these three units is the middle Trinity aquifer, and it is most heavily used. The best water-bearing strata within the middle Trinity aquifer are the lower member of the Glen Rose Limestone and the Cow Creek Limestone.
- 3. Pumping rates for private domestic wells usually are less than 20 gpm and pumping rates for the larger public supply and irrigation wells range from about 100 gpm to about 300 gpm. Specific capacities of the wells are generally low. Three-hour specific-capacity values

determined from tests made during this study range from 0.1 gpm/ft to about 14 gpm/ft.

- 4. Water levels were at high levels during the study because of record high rainfall. Water levels measured in the upper Trinity aquifer generally ranged from a few feet to a little more than a hundred feet below land surface. For the middle Trinity aquifer, depths to water ranged from about 20 feet to just over 200 feet, and for the lower Trinity aquifer, they were about 400 feet or more below land surface.
- 5. Seasonal variations in water levels occur because of the fluctuations in rainfall and pumpage. For the 10 years prior to the heavy rainfall in 1991 and 1992, water levels in the middle and lower Trinity aquifer units in northern Bexar County had declined by 50 to 90 feet. Water levels in the upper Trinity aquifer for the same period reflect no major declines. However, water-level records that are available for one well in the upper Trinity aquifer indicate that a decline of about 60 feet occurred during the 1950's drought.
- 6. Pumpage from the Trinity Group aquifer in 1990 was about6,350 acre-feet. More than half of the pumpage was for

industrial use, slightly more than one-fourth for public supply, slightly less than one-fifth for private domestic use, and slightly more than one-twentieth for irrigation. About 5 percent of the pumpage was from the upper Trinity aquifer, about 85 percent from the middle Trinity aquifer, and about 10 percent from the lower Trinity aquifer.

Water from the Trinity Group aquifer in the study area of 7. northern Bexar County ranges from fresh to slightly saline and has a hardness ranging from hard to very hard. The best quality water is obtained from the middle Trinity aguifer. Shallow wells completed in the upper Trinity aquifer and deeper wells that do not seal off the upper member of the Glen Rose Limestone often produce water that is high in dissolved solids and sulfate. Elevated dissolved solids due to sodium chloride often are found in water from the lower Trinity aquifer. High fluoride, iron, and manganese also occur in localized areas within the Trinity Group aquifer. While fluoride contents above 4 mg/l found in water from some wells in the study area can pose a health risk, constituents such as dissolved solids, iron, and manganese that exceed the Texas Department of Health's recommended maximum secondary constituents generally affect only the overall esthetics of the water.

- Bacterial analyses of water samples from 21 water wells 8. showed some coliform bacteria in 11 (52 percent) of the samples. While the presence of bacteria is not desirable, and in some cases can lead to illness, it is believed to be rather common for most areas nationwide. Included in the above analyses were four samples (19 percent) that showed high concentrations of coliform bacteria which could reflect severe contamination problems. This type of contamination is usually associated with poorly constructed wells and improper disposal or handling of animal and human wastes. The results from sampling and analyses conducted during the current study indicate that the Trinity Group aquifer in northern Bexar County has not been contaminated by pesticides, fuels, or solvents. However, because of their prominent use and nature, their potential as a cause for future problems remains high.
- 9. The estimated water balance for the Trinity Group aquifer in northern Bexar County shows 21,800 acre-feet of water coming into the study area and 22,400 acre-feet going out of it in 1990. About 500 and 100 acre-feet of water are being taken out of storage in the middle and lower Trinity aquifer units, respectively, to make up the

difference. Long-term inflow and outflow are about equal for the upper Trinity aquifer.

- 10. Based on an evaluation of the 1990 water balance for the Trinity Group aquifer in northern Bexar County, it is estimated that the long-term practical yield of the aquifer from existing facilities is about 5,000 acre-feet per year. Spreading pumpage out into the more remote areas of the study area will increase the sustainable yield of the aquifer somewhat, but probably by no more than 1,000 to 2,000 acre-feet per year.
- 11. Exceeding 5,000 acre-feet per year of withdrawals in northern Bexar County is expected to require taking water from storage in the aquifer, which will cause a continuing decline in water levels with increased pumping lifts, reduced pumping rates, and possible deterioration in water quality. Pumping from the aquifer in the area generally north of the study area will intercept some of the water now entering the aquifer in northern Bexar County and add to the declines of water levels caused by pumping within the study area.
- 12. Consideration should be given to establishing an aquifer storage and recovery (ASR) project in the Boerne-Fair Oaks area. A preliminary study should be conducted to

determine if treated surface water can be stored underground and recovered economically to supply peak summer demands and achieve maximum utilization of the water resources that are available for meeting the current and future needs of the area.

13. Managing and protecting the availability of ground water in northern Bexar County is vital for the welfare of the area. Therefore, present programs in the following areas should be continued and strengthened: (a) promotion of water conservation; (b) proper well construction practices; (c) water-quality and water-level monitoring networks; (d) spacing rules for septic systems in heavily populated rural areas; (e) proper closure and plugging of abandoned wells; and (f) public education programs to address aquifer management and protection strategies.

IX. SELECTED REFERENCES

- Adkins, W. S., 1933, The Mesozoic systems in Texas <u>in</u> The geology of Texas, Vol. 1, Stratigraphy: University of Texas Bulletin 3232, Aug. 22, 1932, pp. 239-517.
- Amans, L., and Jones, E., 1989, Aquifer storage and recovery beating the peak in summer demand: Southwest Texas Water Works Journal, July 1989, pp. 4-6.
- Arnow, Ted, 1959, Ground-water geology of Bexar County, Texas: Texas Board of Water Engineers Bulletin 5911, 62 p.
- Ashworth, J. B., 1983, Ground-water availability of the Lower Cretaceous formations in the Hill Country of southcentral Texas: Texas Department of Water Resources Report 273, 173 p.
- Bluntzer, R. L., 1990 (manuscript draft), Evaluation of the ground-water resources of the Paleozoic and Cretaceous aquifers in the Hill Country of central Texas: Texas Water Development Board report.
- Brown, D. S., Gilhousen, J. R., and Nalley, G. M., 1991, Compilation of hydrologic data for the Edwards aquifer, San Antonio area, Texas, 1990, with 1934-90 summary: Edwards Underground Water District Bulletin 50, 169 p.
- Choquette, P. W., and Pray, L. C., 1970, Geologic nomenclature and classification of porosity in sedimentary carbonates: American Association of Petroleum Geologists Bulletin, v. 54, no. 2, p. 207-250.
- The Dallas Morning News, 1991, 1992-93 Texas almanac and state industrial guide: Dallas, Texas, 656 p.
- DeCook, K. J., 1963, Geology and ground-water resources of Hays County, Texas: U. S. Geological Survey Water-Supply Paper 1612, 72 p.
- Espey, Huston & Associates, Inc., 1982 (draft), Feasibility study of recharge on Cibolo Creek: report for Edwards Underground Water District.
- Freeze, R. A., and Cherry, J. A., 1979, Groundwater: Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 604 p.

Gary, M., McAfee, R., Jr., and Wolf, C. L., eds., 1977, Glossary of geology: American Geology Institute, Falls Church, Virginia.

Garza, S., 1962, Recharge, discharge, and changes in groundwater storage in the Edwards and associated limestones, San Antonio area, Texas - a progress report on studies, 1955-59: Texas Board of Water Engineers Bulletin 6201, 51 p.

George, W. O., 1952, Geology and ground-water resources of Comal County, Texas: U. S. Geological Survey Water-Supply Paper 1138, 126 p.

William F. Guyton & Associates, 1958, Memorandum on groundwater gains in upper Cibolo Creek area, Texas: prepared for San Antonio City Water Board, 8 p.

_____, 1979, Report on geohydrology of Comal, San Marcos, and Hueco Springs: Texas Department of Water Resources Report 234, 85 p.

- Hem, J. D., 1985, Study and interpretation of the chemical characteristics of natural water: U. S. Geological Survey Water-Supply Paper 2254, 263 p.
- Lang, J. W., 1953, Ground water in the Trinity Group in the San Antonio area, Texas: U. S. Geological Survey Ground Water Branch, open file, 5 p.
- Livingston, Penn, 1947, Ground-water resources of Bexar County, Texas: Texas Board of Water Engineers report, 23 p.
- Maclay, R. W., 1973, Investigation of the hydrology and geology of the Edwards and associated limestones reservoir, progress report, 1972-73: unpublished.

, 1975, Progress report on limestone hydrology research in the San Antonio area, Texas, June 1970-December 1974: U. S. Geological Survey open-file report.

Maclay, R. W., and Land, L. F., 1988, Simulation of flow in the Edwards aquifer, San Antonio region, Texas, and refinement of storage and flow concepts: U. S. Geological Survey Water-Supply Paper 2336, 48 p.

Maclay, R. W., and Small, T. A., 1976, Progress report on geology of the Edwards aquifer, San Antonio area, Texas,

and preliminary interpretations of borehole geophysical and laboratory data on carbonate rocks: U. S. Geological Survey Open-File Report 76-627, 65 p.

, 1984, Carbonate geology and hydrology of the Edwards aquifer in the San Antonio area, Texas: U. S. Geological Survey Open-File Report 83-537, 72 p.

- Mikels, J., Kent, B., and Creech, J., 1987, Injection well recharge of the Hueco Bolson aquifer, El Paso, Texas: International Symposium on Class V Injection Well Technology, Washington, D.C., p. 435.
- Morris, D. A., and Johnson, A. I., 1966, Summary of hydrologic and physical properties of rock and soil materials, as analyzed by the hydrologic laboratory of the U. S. Geological Survey, 1948-60: U. S. Geological Survey open-file report, 60 p.
- Nelson, H. F., 1973, The Edwards (Lower Cretaceous) Reef Complex and associated sediments in central Texas: University of Texas at Austin, Bureau of Economic Geology Guidebook No. 15, pp. 3-10.
- Petitt, B. M., Jr., and George, W. O., 1956, Ground-water resources of the San Antonio area, Texas: Texas Board of Water Engineers Bulletin 5608, vol. I, 80 p.; vol. II, pt. III, 231 p.
- Puente, Celso, 1978, Method of estimating natural recharge to the Edwards aquifer in the San Antonio area, Texas: U. S. Geological Survey Water-Resources Investigations Report 78-10, 38 p.
- Reeves, R. D., 1967, Ground-water resources of Kendall County, Texas: Texas Water Development Board Report 60, 100 p.

Reeves, R. D., and Lee, F. C., 1962, Ground-water geology of Bandera County, Texas: Texas Water Commission Bulletin 6210, 73 p.

Rose, P. R., 1972, Edwards Group, surface and subsurface, central Texas: University of Texas, Bureau of Economic Geology Report of Investigations No. 74, 98 p.

San Antonio City Water Board, 1992, Water statistics - 1991.

- Shaw, S. L., 1974, Geology and land use capability of the Castle Hills quadrangle, Bexar County, Texas: University of Texas at Austin, M. A. thesis (unpub.), 130 p.
- W. E. Simpson Company, Inc. and William F. Guyton Associates, Inc., 1992, Interim report, North Bexar County Water Resources Study for Edwards Underground Water District: 7 p.
- Small, T. A., 1985, Identification and tabulation of geological contacts in the Edwards aquifer, San Antonio area, Texas: Texas Department of Water Resources, LP-199, 54 p.
- Small, T. A., 1986, Hydrogeologic sections of the Edwards aquifer and its confining units in the San Antonio area, Texas: U. S. Geological Survey Water-Resources Investigations Report 85-4259, 52 p.
- Stein, W. G., 1993, Hydrogeologic map and characteristics of the recharge zone of the Edwards aquifer, Bexar County, Texas: University of Texas at San Antonio, M. S. thesis (unpub.), 83 p.
- Stricklin, F. L., Jr., Smith, C. I., and Lozo, F. E., 1971, Stratigraphy of Lower Cretaceous Trinity deposits of central Texas: University of Texas at Austin, Bureau of Economic Geology Report of Investigations No. 71, 63 p.
- Suppe, J., 1985, Principles of structural geology: Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 537 p.
- Tucker, D. R., 1962, Subsurface Lower Cretaceous stratigraphy, central Texas <u>in</u> Contributions to the geology of Texas: South Texas Geological Society, San Antonio, Texas, pp. 177-217.
- University of Texas at Austin, Bureau of Economic Geology, 1974, Geologic atlas of Texas, San Antonio sheet: Austin, Texas, scale 1:250,000.
- U. S. Department of Commerce, 1941-64, Climatological data, Texas, annual summaries: Weather Bureau, v. 46-69, no. 13.

, 1965-69, Climatological data, Texas, annual summaries: Environmental Science Services Administration, v. 70-74, no. 13. _____, 1970-92, Climatological data, Texas, annual summaries: National Oceanic and Atmospheric Administration, v. 75-97, no. 8.

- Veni, G., 1988, The caves of Bexar County: University of Texas at Austin, Texas Memorial Museum Speleological Monographs, 2, 2nd ed., 300 p.
- Waterreus, P. A., 1992, Hydrogeology of the Camp Bullis area, northern Bexar County: University of Texas at San Antonio, M. S. thesis (unpub.), 186 p.
- Wermund, E. G., Cepeda, J. C., and Luttrell, P. E., 1978, Regional distribution of fractures in the southern Edwards Plateau and their relationship to tectonics and caves: University of Texas at Austin, Bureau of Economic Geology Geological Circular 78-2, 14 p.
- Winter, J. A., 1962, Fredericksburg and Washita strata (subsurface Lower Cretaceous), southwest Texas, <u>in</u> Contributions to geology of south Texas: South Texas Geological Society, San Antonio, pp. 81-115.
- Young, K., 1972, Mesozoic history, Llano region, <u>in</u> Barnes, V. E., Bell, W. C., Clabaugh, S. E., Cloud, P. E., Jr., McGehee, R. V., Rodda, P. U., and Young, K., eds., Geology of the Llano region and Austin area, field excursion: University of Texas at Austin, Bureau of Economic Geology Guidebook 13, 77 p.

POLLUTION CONTROL SERVICES

435 Isom Road,	Suite 228	<u>San Antonio,</u>	TX	78216	(512)340-0343
Report of:Chemi PCS Sample # 23				Received: Reported:	6/5/92 6/10/92
	con & Associates ave Rd., Suite 4 78746				
Attn: Mr. Bill	Klemt				
Sample ID: Well Date Sampled:6/	Water #28-2HF8				
Time Sampled:	·				
Date Analyzed:6	5/8/92				
Parameter	Concentration				
pH	7.3 S.U.			1.12 mg	
Sp.Cond. TDS	410 umhos/cm 340 mg/l			10 mg, 0.4 mg,	
T.Hardness	280 mg/l	Manganese		<0.01 mg	
Calcium	93 mg/l	Magnesium		12 mg,	/1
Chloride	22 mg/l				
Sulfate T.Alkalinity	16 mg/l 242 mg/l				
Fluoride	0.13 mg/1				
Bicarbonate	295 mg/l				

Approved By:

(M)

(MA)

- Wallpen line

Chuck Wallgren Owner

. (- 2HI-E

Pollution Control Services Mineral Analysis QA Check - Stabler Formula

PCS Sample#: 23952 Enter cation results in mg/l mg/l Iron: 0.40 me/l Iron: 0.0143 mg/l Ca : 93.00 me/l Ca : 4.6407 mg/l Mg me/l Mg 12.00 : : 0.9864 mg/l Na mg/l K 10.00 me/l Na : : 0.4350 me/l K : 0.0000 : mg/l Mn : me/l Mn 0.01 0.0004 : Sum Cations(me/l): 6.0768 @Enter anion results in mg/l mg/1 CO3 : me/l CO3 : 0.0000 mg/l HCO3: 295.00 me/l HCO3: 4.8380 mg/1 SO4 : 16.00 me/1 SO4 : 0.3328 mg/l Cl- : 22.00 me/l Cl- : 0.6204 mg/l Fl- : 0.13 me/l Fl- : 0.0068 mg/1 NO3 : 1.12 me/l NO3N: 0.0180 Sum Anions (me/l): 5.8160

İC.

١.

POLLUTION CONTROL SERVICES

435 Isom Road, Suite 228 San Antonio, TX 78216 (512)340-0343 Report of: Chemical Analysis Date Received: 5/13/92 Date Reported: **PCS Sample # 23552** 5/18/92 To: Wm. F. Guyton & Associates 3355 Bee Cave Rd., Suite 401 Austin, TX. 78746 Attn: Mr. Bill Klemt Sample ID: Well Water #28-3FH5 Date Sampled:5/13/92 Time Sampled: Date Analyzed: 5/15/92 Parameter Concentration 7.4 S.U. Nitrate N рH 0.14 mg/l Sp.Cond. 1400 umhos/cm Sodium 22 mg/l TDS 1344 mg/l Iron 5.0 mg/1 T.Hardness 980 mg/l Manganese 0.02 mg/1Calcium 160 mg/l Magnesium 142 mg/l Chloride 18 mg/l Sulfate 663 mg/l T.Alkalinity 288 mg/l Fluoride 4.6 mg/l Bicarbonate 351 mg/l

Approved By:

leuch Wall pen

Chuck Wallgren Owner

Pollution Control Services #98-3FH5 Mineral Analysis QA Check - Stabler Formula

•

l.	PCS Sample#: 235	552		
M	Enter cation rea	sults in mg/l		
l	mg/l Iron: mg/l Ca :	5.00 160.00	me/l Iron: me/l Ca :	0.1790 7.9840
	mg/l Mg :	142.00 22.00	me/1 Mg : me/1 Na :	11.6724 0.9570
E.	mg/l Na : mg/l K :		me/1K :	0.0000
	mgʻl Mn :	0.02	me/l Mn :	0.0007
Ľ.			n Cations(me/l):	20.7931
	Enter anion resu	ilts in mg/l		
L	mg/l CO3 : mg/l HCO3:	305.00	me/l CO3 : me/l HCO3:	0.0000 5.0020
P	mg/l SO4 : mg/l Cl- :	663.00 18.00	me/l SO4 : me/l Cl- :	13.7904 0.5076
Ľ	mg/l Fl- :	4.60	me/l Fl- :	0.2420
ſ	mg/1 NO3 :		me/l NO3N:	0.0023
ľ			n Anions (me/l):	19.5443
M	ERROR = : 3.095	59		

M ł

(M)

ł

(m) l

P

			<i>,</i>)	(}	1			
--	--	--	----------	--	--	--	---	---	--	--	--	--	--	----------	---	--	--	--

· 👘

TABLE 1. RECORDS OF INVENTORIED WELLS

Well Number	Well Owner	Other Well Identification	Driller	Year Com- pleted	Land- Surface Altitude (feet MSL)	Lati- tude	Longi- tude	Producing Unit(s) 1/	Well Depth (feet)	<u>Caming</u> Diam- eter (inches)	Depth	Pump Depth (feet)		atic <u>evel Data</u> Date Measured
AY-68-12-9gh7	Camp Bullis White Ranch	CB-1	-	-	1,152	294503 294008	983211 984549	Kgrl	220	6	-	n/p 213	- 136.28	- 5- 7-92
AY-68-18-61g4 AY-68-18-9ce5	White Ranch	Upper-Upper AY-68-18-901	J. R. Johnson	1952	1,530 1,440	293833	984526	Kgru Ks,ho	1,241	-	-	-	417.03	5- 7-92
AY-68-18-9ce7.1	White Ranch	Main House	Bergman & Sons	1989	1,435	293928	984530	Kgrl	560	6-5/8	437	527	395.73	5- 7-92
AY-68-18-9ce7.2	White Ranch	(new) Main House	•	-	1,435	293928	984530	Kgru	66	5	20	63	14.79	5- 7 -92
AY-68-18-9eh8	White Ranch	(old) Big Barn	Braendle	1981	1,330	293823	984613	Karl, Karu	550	-	-	483	47.72	5- 7-92
AY-68-18-9eh9	White Ranch	abandon Big Barn	<u>-</u>	-	1,325	293823	984607	Kgru	42	-	-	-	34.73	5- 7-92
AY-68-18-9ha6	White Ranch	Lorenzo House		-	1,320	293813	984624	Kgrl, Kgru		6	-	- 588	22.92	5- 7-92
AY-68-18-9iel AY-68-19-2ic3	White Ranch TWC	High Hill AY-68-19-208	Braendle TDWR	1981 1977	1,560	293800 294318	984529 984001	Kgrl, Kgru Ks,ho	620 893	6	545	566 n/p	291.63 451.55	5- 7-92 3-10-92
VI-00-13-510	140	A1-00-17-200	1040		1,405	274510		10,110	073	Ŭ	545		451.01	4-24-92
AY-68-19-3ce9	Fair Oaks	No. 18, AY-68-19-312	Bergman & Sons	1973	1,248	294431		Kcc, Kgrl	401	8-5/8	218	357	83.44	5- 1-92
AY-68-19-3fel	Fair Oaks Fair Oaks	No. 3 No. 4,	Bergman & Sons Bergman & Sons	1976	1,437 1,435	294348 294347	983803 983803	Ks,ho Kcc, Kgrl	1,070 615	8-5/8 8-5/8	772 403	962 567	546.94 262.84	6-10-92 4-29-92
AY-68-19-3fe4	Fair Oaks	AY-68-19-308	Dergineri e Sons	-	1,433	274341	202002	NCC, NYII	015	0-3/0	405	567	202.04	4-23-32
AY-68-19-3ff5	Fair Oaks	No. 2, AY-68-19-303	Bergman & Sons	•	1,342	294348	983738	Kec, Kgrl	553	8-5/8	282	504	184.77	4-29-92
AY-68-19-3fg9	Fair Oaks	No. 6, AY-68-19-307	Bergman & Sons	1978	1,445	294323	983808	Kcc, Kgrl	626	8-5/8	420	588	262.76 274.23	3-18-92 4-29-92
AY-68-19-3hd5	Fair Oaks	No. 16, AY-68-19-310	Bergman & Sons	1982	1,315	294254	983903	Kcc, Kgrl	505	8-5/8	300	462	129.85	3-18-92
AY-68-19-3he3	Fair Oaks	No. 15, AY-68-19-309	Bergman & Sons	1981	1,445	294303	983840	Kcc, Kgrl	630	8-5/8	428	546	293.36	4-30-92
AY-68-19-3hf6	Fair Oaks	No. 13, AY-68-19-311	Bergman & Sons	1978	1,424	294255		Kee, Kgrl	650	8-5/8	430	588	238.72	3-18-92
Аү-68-19-31Ь5	Fair Oaks	No. 5, AY-68-19-306	Bergman & Sons	1978	1,323	294308		Kec, Kgrl	526	8-5/8	323	483	157.31	4-30-92
AY-68-19-31f6	Fair Oaks	No. 22	Bergman & Sons	-	1,304	294254	983734	Kcc, Kgrl	505	8-5/8	306	-	108.92 138.36	3-18-92 4-29-92
AY-68-19-4gh1	White Ranch	Burnt House	• •	1952	1,522	294016 294110		Kgru Ks.ho	60 950	- 8-5/8	780	530	21.82 311.50	5- 7-92 5-14-92
AY-68-19-5fe8 AY-68-19-5fi3.1	- Concept Therapy	No. 1	Johnson Drilling	1952	1,280	294103		Korl	-	7		464	141.59	4- 2-92
AY-68-19-5f13.2	Concept Therapy	No. 2	Haskin Pump Serv.	1983	1,280	294103	984004	Kgrl, Kcc	550	7	260	441	143.55	4- 2-92
AY-68-19-6c14	Camp Stanley	No. 11,	-	-	1,325	294151	983746	Kgrl, Kec	550	10	-	530	153.31	4-23-92
AT-68-19-6c15	Camp Stanley	AY-68-19-604 No. 10, AY-68-19-603	-	-	1,328	294148	983740	Kgrl, Kcc	590	10	390	528	140.94 158.76	2-27-92 4-23-92
AY-68-19-6eb6	Fair Oaks	No. 17, AY-68-19-617	Bergman & Sons	1983	1,215	294130	983838	Kgrl, Kcc	441	8-5/8	240	378	28.18 50.26	3-18-92 4-29-92
AT-68-19-6fcl	Camp Stanley	No. 9,	-	-	1,320	294141	983745	Kgrl, Kcc	601	8	•	483	149.69	4-24-92
AY-68-19-6gf6	EUND	AY-68-19-602 Ay-68-19-618	M. B. Doyle	1990	1,170	294023	983913	Kgrl	302	8-5/8	177	n/p	21.44 35.70	3-10-92 4-24-92
AY-68-19-61b7	Leon Spr. Mobile	AY-68-19-607	Haskin Pump Serv.	1970	1,160	294035	983759	Kgrl, Kcc	404	7	312	-	-	-
AY-68-19-61b8	Leon Spr. Mobile	AY-68-19-606	Haskin Pump Serv.	1967	1,170	294037	983755	Kgrl, Kcc	415	7	348	-	-	-
AY-68-19-61c9	Leon Spr. Mobile	AY-68-20-402 AY-68-19-608	Haskin Pump Serv. Haskin Pump Serv.	- 1971	1,190 1,145	294038 294017	983731 983748	Kgrl Kgrl, Kcc	425 505	7	- 205	-	-	-
AY-68-19-61e9 AY-68-19-7da7	Leon Spr. Mobile White Ranch	East Pasture	Braendle	1971	1,550	293859	984458	Kgru, Kgrl	250	· -	•	210	161.62	5- 7-92
AY-68-19-8he6	EUND ,	AY-68-19-806	M.B. Doyle	1990	1,230	293755	984109	Kgrl	710	8-5/8	403	n/p	197.99 196.50	4- 1-92 4-24-92
AY-68-19-9fi6.1	SA Parks (Friedrich)	AY-68-19-901	Hill Country Water	1976	1,150	293827	983732	Kgrl	500	8-5/8	304	-	143.88 141.53	3-20-92 4-24-92 3-20-02
AY-68-19-9fi6.2	SA Parks	•	-	-	1,155	293829	983731	Kgrl, kgru	325	6	•	-	96.18 68.05	3-20-92 4-24-92
AY-68-20-1ad8 AY-68-20-1ag2	(Friedrich) Fair Oaks Fair Oaks	No. 12 No. 14	- Layne Texas	1980	1,254 1,272	294431 294423	983724 983724	Kgrl, Kcc Ks,ho	438 877	8-5/8 8-5/8	224 690	378 357	49.84 69.58	3-18-92 3-18-92
-			-										130.84	4-29-92

	(}												ĩ
--	---------------	--	--	--	--	---	--	--	--	--	--	--	--	--	--	--	--	---

Table 1. Records of Inventoried Wells (Continued)

•

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Well Number	Well Owner	Other Well Identification	Driller	Year Com- pleted	Land- Surface Altitude (feet MSL)	Lati- tude	Longi- tude	Producing Unit(s) 1/	Well Depth (feet)	<u>Casing</u> Diam- eter (inches)	Depth	Pump Depth (feet)		atic <u>evel Data</u> Date Mensured
Art-63-21-641 Fair Oake No. 20 - - 1,330 294353 993724 Koru 415 6-5/6 653 n/p 147,7 3-11 Art-63-20-104 Carep Bullis Care Dullis Care				:	-							290		123.33	4-15-92 3-18-92
AV-66-20-464 Camp Ballis Camp State Source Source <t< td=""><td>AY-68-20-1dd1</td><td>Fair Oaks</td><td>No. 20</td><td>-</td><td>-</td><td>1,330</td><td>294353</td><td>983724</td><td>Kcc</td><td>435</td><td>8-5/8</td><td>553</td><td>n/p</td><td>147.77</td><td>5- 1-92 3-18-92 4-29-92</td></t<>	AY-68-20-1dd1	Fair Oaks	No. 20	-	-	1,330	294353	983724	Kcc	435	8-5/8	553	n/p	147.77	5- 1-92 3-18-92 4-29-92
AV-66-19-101 AV-66-19-204 AV-66-19-204 Camp Ballis CB-10 Ca+25 Camp Ballis Thermpson Drilling Ca+25 1964 - 198411 State State State State State <td></td> <td></td> <td></td> <td>:</td> <td>1917</td> <td>1,330 1,240</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>41.04</td> <td>4-15-92 4-23-92</td>				:	1917	1,330 1,240								41.04	4-15-92 4-23-92
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	AY-68-20-2a15	Camp Bullis		Thompson Drilling	1966	-			-			40			4-16-92
$ \begin{array}{c} Ar -6e - 2e $	AY-68-20-2ef9	Camp Bullis	CB-16	-		1,270							294		4-21-92
AY-66-20-bab Curp Bullis CB-4	AY-68-20-2hg4	Camp Bullis	CB-25	-	-		294239	983406		-	Ġ	-			4-21-92
AY-66-20-bes/2 Comp Bollis CB-19 Haskin Pump Serv. 1973 1,160 294337 983116 Kgr.l.	AY-68-20-3ab7			-	-	1,155						-			4-16-92
AY-66-20-bit 7 Comp Bullia CB-26 - <td< td=""><td>AY-68-20-3dg9</td><td>Camp Bullis</td><td>CB-17</td><td>Haskin Pump Serv.</td><td></td><td>1,265</td><td></td><td>983218</td><td>Kgrl</td><td>400</td><td></td><td>45</td><td>-</td><td>-</td><td>-</td></td<>	AY-68-20-3dg9	Camp Bullis	CB-17	Haskin Pump Serv.		1,265		983218	Kgrl	400		45	-	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	AY-68-20-3ee7			Haskin Pump Serv.	1973			983118	Kgrl, Kgru	403	7	43	-	73.82	4-21-92
NY-66-20-4ed9.1 Camp Bullis NY-66-20-4ed9.2 Camp Bullis NY-66-20-4ed0 No. 1	AY-68-20-3hf7	Camp Bullis	CB-26	•	-				Kgrl, Kgru		-	-	252	100.21	4-21-92
AY-66-20-4ef3.2 Cher Buillis Cher Journey 1918 1,166 284107 983524 Rgr. Rgru 377 14 - n/p - 100.15 4-22 AY-66-20-4ef5 Camp Buillis CD-27 Haskin Pump Serv. 1973 1,131 284135 983524 Rgr. Rgru 377 7 40 - 100.15 4-24 AY-66-20-505 Camp Buillis CD-44 - 1973 1,180 294011 983524 Kgr. Kgru 377 7 40 - 100.15 4-24 AY-66-20-505 Camp Buillis CD-44 - 1973 1,180 294011 983544 Kgru, Kgru 500 - n/p 33.26 4-22 AY-66-20-622 Camp Buillis CD-42 Dawnport 1999 1,212 293595 983723 Kgru, Kgru 650 10-3/4 312 - 650.7 31.0 - 650.7 36.0 - 650.7 36.0 - 650.7 36.0 - 650.7 36.0 - 650.7 36.0 56.7 37.0 <t< td=""><td></td><td>(Bullis)</td><td>-</td><td></td><td></td><td>•</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>5- 1-92</td></t<>		(Bullis)	-			•									5- 1-92
AY-66-20-4/C6 Camp Bullis C8-77 Haskin Pump Serv. 1973 1,315 294135 983504 Kgri, Kgru 377 7 40 - 100.15 4-12 AY-66-20-5417 Camp Bullis C8-78 Theopson Pullis - - 38,77 4-22 AY-66-20-5417 Camp Bullis C8-74 - - - 37,7 4-2 AY-66-20-5417 Camp Bullis C8-4 - - - 37,7 4-2 AY-66-20-5418 EXDM AY-66-20-642 Daminon Golf - Haskin Pump Serv. 1989 1,120 233954 983723 Kgri, Kgru - 8-5/8 - - - 76,0 - 67,0 5-6 AY-66-20-7ad2 Dominion Golf No. 47 Haskin Pump Serv. 1983 1,125 233938 983720 Kgru, Kgru - 8-5/8 605 567 35,12 3-27 AY-66-20-7ad5 Dominion Golf No. 57 Haskin Pump Serv. 1983 1,127 293937 983720 Kcru, Kgru 645 7 560			AY-68-20-401	-		-			Kgrl			310	420		2-27-92 4-23-92
AY-66-20-50:60 Comp Bullis CB-28 Thempson Drilling 1966 1,382 294142 983327 Kgru 980 6 40 - 243.67 4-22 AY-66-20-5055 Camp Bullis CB-26 - - 1973 1,100 294011 983454 Kgru 98 7 - - 38.27 4-22 AY-66-20-5055 Camp Bullis CB-26 - - 1973 1,100 294011 983454 Kgru, Kgru 98 7 - - 38.27 4-22 AY-66-20-5068 DUMIN AY-662-20-602 Dawanport 1999 1,215 294054 983127 Kgru, Kgru 640 8 247 n/p 164.86 4- - 65.7 3.67 4-22 AY-66-20-7ac2 Dominion Golf No. 47 Haakin Pump Serv. 1983 1,125 293937 983720 Kgru 215 7 217 210 59.46 56 56 36.12 3-7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 </td <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>1,168</td> <td></td> <td></td> <td>Kgr</td> <td></td> <td>14</td> <td>-</td> <td>n/p</td> <td>-</td> <td>-</td>				-		1,168			Kgr		14	-	n/p	-	-
$\begin{array}{cccc} Ar+66-20-5al7 & Carp Bullis & - & - & - & - & - & 1,20 \\ Ar+66-20-5ac5 & Carp Bullis & CB-42 \\ Ar+66-20-5ac5 & Dominion Golf & No. 47 \\ Haskin Pump Serv. & 1983 & 1,125 & 233938 & 963720 \\ Ar+66-20-7ac5 & Dominion Golf & No. 11 \\ Haskin Pump Serv. & 1983 & 1,125 & 233933 & 963720 \\ Ar+66-20-7ac5 & Dominion Golf & No. 17 \\ Haskin Pump Serv. & 1983 & 1,125 & 233937 & 963720 \\ Ar+66-20-7ac5 & Dominion Golf & No. 57 \\ Haskin Pump Serv. & 1983 & 1,115 & 293917 & 963720 \\ Ar+66-20-7ac5 & Dominion Golf & No. 57 \\ Haskin Pump Serv. & 1983 & 1,115 & 293917 & 963720 \\ Ar+66-20-7ac5 & Dominion Golf & No. 37 \\ Haskin Pump Serv. & 1983 & 1,115 & 293917 & 963720 \\ Ar+66-20-7ac5 & Dominion Golf & No. 37 \\ Haskin Pump Serv. & 1983 & 1,115 & 293917 & 963720 \\ Ar+66-20-7ac5 & Dominion Golf & No. 37 \\ Haskin Pump Serv. & 1983 & 1,115 & 293917 & 963720 \\ Ar+66-20-7ac4 & Camp Bullis \\ Ar+66-20-7ac4 & Camp Bullis \\ Ar+66-20-7ac4 & Camp Sullis \\ Ar+66-20-7ac5 & Dominion Golf & No. 37 \\ Haskin Pump Serv. & 1976 & 1,003 & 29375 & 93365 \\ Kgru & 206 & 6-5/8 & 562 & - & 34.00 & 3-7 \\ Ar+66-20-7ac4 & Camp Sullis \\ Ar$						1,315			Kgrl, Kgru				-		4-16-92
$\begin{array}{cccc} Ar+66-20-50c5 \\ Ar+66-20-50c5 \\ Carp Bullis \\ Free 2-2-5cab \\ Free 2-2-5cab \\ Carp Bullis \\ Free 2-2-5cab \\ Free 2-2-5cab \\ Carp Bullis \\ Free 2-2-5cab \\ $			CB-28	Thompson Drilling								40	-		4-20-92
AY-66-20-6a2 Camp Bullis CB-29 - - 1,228 294120 933134 Kgru, Kgru 177 5 - - 25,97 4-22 AY-66-20-7as5 Dominion Golf - Haskin Pump Serv. 1989 1,120 293950 983127 Kgru, Kgru - 8-5/8 - - 55,97 4-22 AY-66-20-7as5 Dominion Golf - Haskin Pump Serv. - 1,120 293950 983723 Kgru, Kgru - 8-5/8 - - 55,97 3-27 AY-66-20-7ac5 Dominion Golf No. 47 Haskin Pump Serv. 1983 1,125 293939 983720 Kgru 215 7 217 210 93.469 5-6 AY-66-20-7ac5 Dominion Golf No. 17 Haskin Pump Serv. 1983 1,125 293937 983720 Kgru 645 7 500 506 56,73 32.2 37.02 5-6 605 567 35.2 32.9 5-7 32.9 5-7 32.9 32.9 57.02 50.4 56.43.3 3-22				-							•	-	-		4-20-92
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				-	19/3	1,180			Kgrl, Kgru	250		-	n/p	93.36	4-23-92
AY-68-20-7as5 Deminion Golf - Haskin Pump Serv. 1989 1,120 293954 983723 Kgrl, Kgr 550 10-3/4 312 - 164.64 4-5 6 AY-68-20-7as8 Deminion Golf - Haskin Pump Serv. - 1,120 293950 983723 Kgrl, Kgru - 8-5/8 - - 58.72 5-7 3-7 312 - 64.64 4-5 6 7 217 210 55.65 3-27 3-27 34.69 5-7 34.69 5-7 34.69 5-7 34.69 5-7 34.69 5-7 34.69 5-7 34.69 5-7 34.69 5-7 34.69 5-7 32.93 5-7 32.93 5-7 32.93 5-7 32.93 5-7 32.93 5-7 34.69 5-7 34.69 5-7 34.69 5-7 32.93 5-7 34.69 5-7 34.69 5-7 34.69 5-7 34.69 5-7 34.69 5-7 34.69 5-7 34.69 5-7 34.69 5-7 34.69 5-7 34.69<				-	1000								-7		4-21-92
AY-68-20-7aa8 Dominion Golf - Hankin Pump Serv. - 1,120 23350 983723 Kgru - 8-5/8 - - 55.72 3-22 AY-68-20-7ad2 Dominion Golf No. 47 Haskin Pump Serv. 1983 1,125 23338 983720 Kgru 215 7 217 210 55.85 3-22 AY-68-20-7ad5 Dominion Golf No. 17 Haskin Pump Serv. 1983 1,125 233938 983720 Kcc, Ks,ho 1,185 8-5/8 605 567 35.12 3-22 AY-68-20-7ad5 Dominion Golf No. 57 Haskin Pump Serv. 1983 1,115 293917 983720 Kcc 6688 8-5/8 605 - 34.08 3-27 AY-68-20-7ad5 Dominion Golf No. 37 Haskin Pump Serv. 1983 1,115 293917 983720 Kcc 6688 8-5/8 605 - 34.08 3-27 AY-68-20-7ad5 Dominion Golf No. 37 Haskin Pump Serv. 1963 1,105 29345 98372 Kgru 204 6 <td< td=""><td></td><td></td><td>A1-00-20-002 *</td><td></td><td></td><td></td><td>293954</td><td></td><td></td><td></td><td></td><td></td><td>n/p _</td><td>164.84</td><td>4- 8-92 4- 8-92</td></td<>			A1-00-20-002 *				293954						n/p _	164.84	4- 8-92 4- 8-92
AY-68-20-7ad2 Deminion Golf No. 4? Haskin Pump Serv. 1983 1,125 29393 983720 Kgru 215 7 217 210 59.85 3-22 AY-68-20-7ad5 Dominion Golf No. 1? Haskin Pump Serv. 1983 1,125 29393 983720 Kcc, Ks,ho 1,185 8-5/8 605 567 36.12 3-22 AY-68-20-7ad5 Dominion Golf No. 57 Haskin Pump Serv. 1983 1,115 29393 983718 Kgru 645 7 560 504 64.53 3-22 3-23 3-24 3-23 3-24 3-22 3-24 3-23 3-24 3-24 3-24 3-24 3-24 3-24	AY-68-20-7aa8	Dominion Golf	-	Haskin Pump Serv.	-	1,120	293950	983723	Kgrl, Kgru	-	8-5/8	-	-	58.72	5- 8-92 3-27-92
AY-68-20-7ed5 Dominion Golf No. 1? Haskin Pump Serv. 1983 1,125 293937 983720 Kcc, Ks,ho 1,185 8-5/8 605 567 36,12 3-27 AY-68-20-7ed5 Dominion Golf No. 57 Haskin Pump Serv. 1983 1,117 293933 983718 Kgru 645 7 560 504 64,53 3-27 AY-68-20-7ea6 Dominion Golf No. 37 Haskin Pump Serv. 1983 1,115 293917 983720 Kcc 6688 8-5/8 605 - 34.08 3-27 AY-68-20-7ceA Camp Bullis CB-43 - 1971 1,188 293954 983702 Kcc 6688 8-5/8 605 - 34.08 3-27 AY-68-20-7de5 Dominion Colf No. 27 Haskin Pump Serv. 1963 1,050 293756 983636 Kgru 262 6-1/2 - 13.13 3-24 AY-68-20-7d4 AY-68-20-703 - - 1,080 293756 983636 Kgru 200 8-5/8 90 - 24.09 3-24	AY-68-20-7ad2	Dominion Golf	No. 4?	Haskin Pump Serv.	19 83	1,125	293938	983720	Kgru	215	7	217	210	59.85	5- 8-92 3-27-92
AY-68-20-7ad5 Dominion Golf No. 57 Haskin Pump Serv. 1983 1,127 293933 983718 Kgru 645 7 560 504 64,53 3-27 AY-68-20-7ag5 Dominion Golf No. 37 Haskin Pump Serv. 1983 1,115 293917 983720 Kcc 6688 8-5/8 605 - 34.08 3-27 AY-68-20-7ca4 Camp Bullis CB-43 - 1971 1,180 293954 983720 Kgru 204 6 78 - 97.34 4-22 AY-68-20-7nd4 County Park AY-68-20-703 - - 1,080 293756 983635 Kgru 206 6-1/2 - <td>AY-68-20-7ad5</td> <td>Dominion Golf</td> <td>No. 17</td> <td>Haskin Pump Serv.</td> <td>1983</td> <td>1,125</td> <td>293937</td> <td>983720</td> <td>Kcc, Ks,ho</td> <td>1,185</td> <td>8-5/8</td> <td>605</td> <td>567</td> <td>36.12</td> <td>5- 6-92 3-27-92 5- 8-92</td>	AY-68-20-7ad5	Dominion Golf	No. 17	Haskin Pump Serv.	1983	1,125	293937	983720	Kcc, Ks,ho	1,185	8-5/8	605	567	36.12	5- 6-92 3-27-92 5- 8-92
AY-68-20-7ag5 Dominion Golf No. 37 Haskin Pump Serv. 1983 1,115 293917 983720 Kcc 688 8-5/8 605 - 34.08 3-27 AY-68-20-7ca4 Camp Bullis CB-43 - 1971 1,188 293954 983545 Kgru 204 6 78 - 97.34 4-27 AY-68-20-7nd4 County Park No. 27 Haskin Pump Serv. 1983 1,105 293846 983545 Kgru 204 6 78 - 97.34 4-27 AY-68-20-7nd4 County Park AY-68-20-702 - - 1,080 293756 983635 Kgru 202 6-1/2 - - 33.13 3-24 AY-68-20-7nd6 County Park AY-68-20-704 Haskin Pump Serv. 1976 1,080 293757 983635 Kgru 200 8-5/8 90 - 24.09 3-24 AY-68-20-7hd6 County Park AY-68-20-802 No. 15, Haskin Pump Serv. 1976 1,072 293903 983458 Kgru 300 8-5/8 220 <td>AY-68-20-7ad5</td> <td>Dominion Golf</td> <td>No. 57</td> <td>Haskin Pump Serv.</td> <td>1983</td> <td>1,127</td> <td>293933</td> <td>983718</td> <td>Kgru</td> <td>645</td> <td>7</td> <td>560</td> <td>504</td> <td>64.53</td> <td>3-27-92 5- 8-92</td>	AY-68-20-7ad5	Dominion Golf	No. 57	Haskin Pump Serv.	1983	1,127	293933	983718	Kgru	645	7	560	504	64.53	3-27-92 5- 8-92
AY-68-20-7ce4 Camp Bullis CB-43 - 1971 1,188 293954 983545 Kgru 204 6 78 - 97.34 4-22 AY-68-20-7de5 Dominion Golf No. 27 Haskin Pump Serv. 1983 1,105 293846 983702 Kgru 606 8-5/8 562 - 13.06 5-2 AY-68-20-7hd4 County Park AY-68-20-703 - - 1,080 293756 983636 Kgru 200 8-5/8 90 - 24.09 3-24 AY-68-20-7hd4 County Park AY-68-20-704 Haskin Pump Serv. 1976 1,080 293757 983626 Kgru 200 8-5/8 90 - 24.09 3-24 AY-68-20-7hd4 Camp Bullis No. 15, Haskin Pump Serv. 1976 1,072 293903 983458 Kgru 200 8-5/8 90 - 24.09 3-24 AY-68-20-802 No. 8, Johnson Drilling 1,072 293903 983458 Kgrl 200 8-5/8 90 - 24.09 3-24	AY-68-20-7ag5	Dominion Golf	No. 37	Haskin Pump Serv.	1983	1,115	293917	983720	Kec	688	8-5/8	605	-	34.08	3-27-92 5- 8-92
AY-68-20-7de5 Dominion Golf No. 27 Haskin Pump Serv. 1983 1,105 293846 983702 Kgru 606 8-5/8 562 - 13.06 5-2 AY-68-20-7hd4 County Park AY-68-20-702 - - 1,080 293756 983636 Kgru 262 6-1/2 - - 33.13 3-24 AY-68-20-7hd4 County Park AY-68-20-703 - - 1,080 293756 983636 Kgru 262 6-1/2 - - - 33.13 3-24 AY-68-20-7hd4 County Park AY-68-20-704 Haskin Pump Serv. 1976 1,080 293757 983626 Kgru 200 8-5/8 90 - 24.09 3-24 AY-68-20-8da4 Camp Bullis No. 15, Haskin Pump Serv. 1976 1,072 293903 983458 Kgrl 300 8-5/8 220 300 18.93 3-24 AY-68-20-8da42 Camp Bullis No. 3, - 1929 1,105 293903 983458 Kgrl plugged 8 86	BY-69-70-7ca4	Comp Bullie	CB-41	-	1971	1.188	293954	983545	Kami	204	6	79	_		4-20-92
AY-68-20-7hd4 County Park (R. Russell) AY-68-20-702 - - 1,080 293756 983636 Kğru 262 6-1/2 - - 33.13 3-24 AY-68-20-7hd4.2 County Park (R. Russell) AY-68-20-703 - - 1,080 293756 983636 Kgru, Kgrl plugged 6-1/2 -				Haskin Pump Serv.									-		5- 8-92
AY-68-20-7hd4.2 County Park (R. Russell) AY-68-20-703 - - 1,080 293756 983636 Kgru, Kgrl plugged 6-1/2 -		County Park		•	•								-		3-24-92
AY-68-20-7hd6 (R. Russell) County Park (R. Russell) AY-68-20-704 Haskin Pump Serv. 1976 1,080 293757 983626 Kgru 200 8-5/8 90 - 24.09 3-24 AY-68-20-8da4 Camp Bullis No. 15, AY-68-20-802 Haskin Pump Serv. 1976 1,072 293903 983458 Kgrl 300 8-5/8 220 300 18.93 3-26 AY-68-20-8da4.2 Camp Bullis No. 8, AY-68-20-802 Johnson Drilling 1,074 293903 983458 Kgrl plugged 8 86 n/p -	AY-68-20-7hd4.2	County Park	AY-68-20-703	-	-	1,080	293756	983636	Kgru, Kgrl	plugged	6-1/2	-	-	-	-
AY-68-20-8da4 Camp Bullis No. 15, AY-68-20-802 Haskin Pump Serv. 1976 1,072 293903 983458 Kgrl 300 8-5/8 220 300 18.93 3-26 AY-68-20-8da4.2 Camp Bullis No. 8, AY-68-20-803 Johnson Drilling 1,074 293903 983458 Kgrl plugged 8 86 n/p - <t< td=""><td>AY-68-20-7hd6</td><td>County Park</td><td>AY-68-20-704</td><td>Haskin Pump Serv.</td><td>1976</td><td>1,080</td><td>293757</td><td>983626</td><td>Kgru</td><td>200</td><td>8-5/8</td><td>90</td><td>-</td><td></td><td>3-24-92 4-24-92</td></t<>	AY-68-20-7hd6	County Park	AY-68-20-704	Haskin Pump Serv.	1976	1,080	293757	983626	Kgru	200	8-5/8	90	-		3-24-92 4-24-92
AY-68-20-8da4.2 Camp Bullis No. 8, AY-68-20-803 Johnson Drilling 1,074 293903 983458 Kgrl plugged 8 86 n/p - AY-68-20-8df1 Camp Bullis No. 3, AY-68-20-801 - 1929 1,105 293853 983425 Kgrl 260 8 210 - 60.93 3-26 AY-68-20-8df1 Camp Bullis CB-56 Johnson Drilling 1933 1,092 293759 983425 Kgrl, Kgru 572 10 6 n/p 122.08 4-23 AY-68-20-9ba8 Camp Bullis CB-56 Johnson Drilling 1933 1,092 293759 983132 Kgrl, Kgru 572 10 6 n/p 122.08 4-23 AY-68-20-9ba8 Camp Bullis CB-65 Burkett Drilling 1956 1,062 293813 883136 Kgrl, Kgru 365 7 8 - 222.99 4-23 AY-68-20-9ha5 Camp Bullis CB-65 Burkett Drilling 1956 1,062 293813 983131 Kgrl - 7 - - 148.14	AY-68-20-8da4	Camp Bullis		Haskin Pump Serv.	1976	1,072	293903	983459	Kgrl	300	8-5/8	220	300		3-26-92
AY-68-20-8gf1 Camp Bullis CB-56 Johnson Drilling 1933 1,092 293759 983425 Kgrl, Kgru 572 10 6 n/p 122.08 4-23 AY-68-20-9ba8 Camp Bullis CB-56 Johnson Drilling 1933 1,092 293759 983425 Kgrl, Kgru 572 10 6 n/p 122.08 4-23 AY-68-20-9ba8 Camp Bullis CB-48 - 1,165 293947 983132 Kgrl, Kgru 365 7 8 - 222.99 4-22 AY-68-20-9ba4 Camp Bullis CB-65 Burkett Drilling 1956 1,062 293813 983136 Kgrl, Kcc, 805 6 - <td>AY-68-20-8da4.2</td> <td>Camp Bullis</td> <td></td> <td>Johnson Drilling</td> <td></td> <td>1,074</td> <td>293903</td> <td>983458</td> <td>Kgrl</td> <td>pluggeð</td> <td>8</td> <td>86</td> <td>n/p</td> <td>-</td> <td>-</td>	AY-68-20-8da4.2	Camp Bullis		Johnson Drilling		1,074	293903	983458	Kgrl	pluggeð	8	86	n/p	-	-
AY-68-20-8gf1 Camp Bullis CB-56 Johnson Drilling 1933 1,092 293759 983425 Kgrl, Kgru 572 10 6 n/p 122.08 4-23 AY-68-20-9ba8 Camp Bullis CB-48 - - 1,165 293947 983132 Kgrl, Kgru 365 7 8 - 222.99 4-23 AY-68-20-9ba8 Camp Bullis CB-65 Burkett Drilling 1956 1,062 293813 983136 Kgrl, Kgru 365 7 8 - 222.99 4-23 AY-68-20-9ha4 Camp Bullis CB-65 Burkett Drilling 1956 1,062 293813 983136 Kgrl, Kgru 805 6 -	AY-68-20-8df1	Camp Bullis	No. 3,	-		-			-		-				3-26-92
AY-68-20-9ba8 Camp Bullis CB-48 - - 1,165 293947 983132 Kgrl, Kgru 365 7 8 - 222.99 4-22 AY-68-20-9ba4 Camp Bullis CB-65 Burkett Drilling 1956 1,062 293813 983136 Kgrl, Kcc, 805 6 - <t< td=""><td>AY-68-20-8gf1</td><td>Camp Bullis</td><td></td><td>Johnson Drilling</td><td>1933</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>n/p</td><td></td><td>4-23-92</td></t<>	AY-68-20-8gf1	Camp Bullis		Johnson Drilling	1933								n/p		4-23-92
AY-68-20-9ha5 Camp Bullis CB-66 - - 1,060 293814 983131 Kgrl - 7 - - 148.14 4-22 AY-68-20-9ha5 Camp Bullis CB-66 - - 1,060 293814 983131 Kgrl - 7 - - 148.14 4-22 AY-68-21-2hd4 Kiddle Koop Day - Hill Country 1981 1,090 294256 982638 Kgrl, Kcc 550 6-5/8 103 - 78.28 3-25 Ay-68-21-2hd4 Kiddle Koop Day - Hill Country 1981 1,090 294256 982638 Kgrl, Kcc 550 6-5/8 103 - 78.28 3-25 Ay-64 Care Water - - - - - - 4-24				Burkett Drilling	- 1956				Kgrl, Kcc,			-	-	222.99	4-22-92
AY-68-21-2hd4 Kiddle Koop Day - Hill Country 1981 1,090 294256 982638 Kgrl, Kcc 550 6-5/8 103 - 78.28 3-25 Care Water 78.75 4-24		•									-		_	140 14	4
		Kiddie Koop Day	CB-66 -									103	-	78.28	4-22-92 3-25-92
AY-68-21-5ah8 Iron Skillet - Avers Drilling 1988 1.172 294143 982703 Karl 380 5 380 336 179.98 3-25	AY-68-21-2h19 AY-68-21-5ah8	Robert Wray	•	Bergman & Sons	1990 1988	1,325 1,172	294231 294143	982553 982703	Kgrl, Kgru Kgrl	565 380	6-5/8 5	281 360	457 336	336.14 179.98	4-24-92 4-14-92 3-25-92 4-24-92

Paga 2

Table 1. Records of Inventoried Wells (Continued)

S-2.

AY-68-28-304

Club

Hammet Water

Systems

Land-**Casing Data** Static Year Surface Producing Well Diam-Water-Level Data Pump Other Well Altitude Com-Lati-Longi-Unit(s) Depth Depth eter Depth Depth Date Well Number Well Owner Identification Driller pleted (feet MSL) tude tude 1/ (feet) (inches) (feet) (feet) (fect) Measured AY-68-21-5de8 Hill Country 1989 Mouse's 1,190 294108 982707 625 Kgrl, Kgru 6-5/8 200 504 320.75 4-24-92 Smokehouse Water AY-68-21-5ab2 Shelton's Health AY-68-21-501 Glass & Tucker 1972 1,230 294048 6-5/8 232 982708 Kgru, Kgrl plugged n/p School AY-68-21-71a6 1,085 Stone Oak 293813 982803 Ked, Kgru -5-3/4 π/р 191.80 4-8-92 AY-68-21-8da6 Stone Oak 1,205 293905 982717 Ked, Kgru n/p 283.75 4-8-92 AY-68-21-801 AY-68-21-8f13 **Canyon Lake** Adcock 1964 1,028 293833 982505 Ked, Kgru plugged 8 404 n/p Forest AY-68-21-8gg1 EUMD AY-68-21-802 Schwope 1976 990 293747 982727 Ked, Kgru 300 6 202 180.53 4- 1-92 n/p 4-24-92 195.45 AY-68-21-9f14 City of AY-68-21-901 1978 1,015 293826 982242 Kgru, Ked 560 4 405 213.44 3-17-92 n/p San Antonio 210.49 4-24-92 AY-68-26-3ca3 White Ranch Across from 1957 1.460 293720 984547 Kgru -120.99 5- 7-92 n/p Haby 1,450 1978 AY-68-26-3ca6 White Ranch Haby Braendle 293720 984535 Kgrl, Kgru 632 7 483 160.84 5- 7-92 Oak Valley Golf B. Poster 1987 1,263 293720 984423 210 100 AY-68-27-1ac4 190 Kgru -28.83 6-16-92 AY-68-27-1ad4 White Ranch Front Gate 1,338 293703 984458 200 164.23 Kgru 5- 7-92 • 1,110 AY-68-27-101 1976 293542 984240 100 6-5/8 100 3-11-92 AY-68-27-11c5 EIDD Schwope & Sons Ked, Kgru -16.49 35.09 4-24-92 AY-68-27-2bf1.1 1,140 293711 984104 320 **Grey Moss Inn** Braendle Koru _ 100.06 . 3-11-92 99.95 4-24-92 1,140 725 250 λY-68-27-2bf1.2 **Grey Moss Inn** Braendle 1989 293711 984103 Kgrl, Kcc, 6-5/8 105.53 3-11-92 Kgru 293712 AY-68-27-2bf1.3 **Grey Moss Inn** -Braendle 1,140 984103 Kgrī 102.06 3-11-92 1988 983902 780 10 682.50 AY-68-27-3bd8 SA Parks 1,252 293702 Kgrl 490 219.23 4- 2-92 (Cedar Creek) Doyal Drilling 1,133 983821 Walter Gerlach AY-68-27-304 1969 293712 47 AY-68-27-3bf3 290 256 93.36 4-14-92 Koru AY-68-27-303 1976 1,000 293515 983736 Ked. Karu 354 6-5/8 230 92.55 AY-68-27-3112 EUMD Schwope & Sons 3-19-92 109.22 4-24-92 AY-68-27-3113 EUND AY-68-27-305 Schwope & Sons 1976 1,000 293516 983734 Ked 253 6-5/B 203 100.36 3-19-92 107.84 4-24-92 1,040 293437 984121 300 78.51 3-11-92 AY-68-27-5be4 Helotes BBO -Koru -102.76 4-24-92 AY-68-27-516 1965 1.040 293430 984122 180 6-1/4 28 AY-68-27-5be7 Helotes Post Rosenkranz Koru Office 1,175 983427 856 492 3-20-92 AY-68-28-2ab6 SA Parks Courtney Drilling 1989 293724 Kgrl, Kcc 6 210.66 (Eisenhower) 195.81 6- 8-92 983427 250 AY-68-28-2ab6.2 SA Parks Haskin Pump Serv. 1986 1,175 293724 Kgru, Kgrl plugged 6 n/p (Eisenhower) McDonna AY-68-28-207 Schwope & Sons 1975 1,062 293650 983414 265 6-5/8 200 252 154.18 4-10-92 AY-68-28-2a16 Kgru, Ked Properties H. Bowman 1966 980 293518 983326 Ked, Kgru 10 270 -AY-68-28-2hf8 Shavano Park No. 5, AY-68-28-203 1971 960 293504 983326 485 10 273 557 AY-68-28-2h15 Shavano Park No. 6, Haskin Pump Serv. Ked, Kgru . -AY-68-28-205 266.52 1946 1,025 293530 983312 656 8 100 2-28-92 Johnson Drilling n/p AY-68-28-21d2 Shavano Park No.1, Red, Kgru AY-68-28-204 213.44 6- 5-92 293515 983255 457 8 100 575 1950 975 Johnson Drilling Ked AY-68-28-21h2 Shavano Park No. 2, AY-68-28-202 964 293644 983003 _ 373.28 4- 7-92 AY-68-28-3c19.1 Sonterra Country N-1 Haskin Pump Serv. Kgr Club 983005 AY-68-28-3c19.2 Sonterra Country N-2 Haskin Pump Serv. -958 293642 Kar _ --Club 983003 394 294.27 4- 7-92 1985 952 293611 1,260 10-3/4 AY-68-28-3ff9 Sonterra Country S-4. 3 Haskin Pump Serv. Kgrl, Kgru -AY-68-28-309 Club Kgrl, Kcc, 1,235 10-3/4 337 234.49 4- 7-92 894 293555 983023 AY-68-28-3fh5 Sonterra Country S-5, Haskin Pump Serv. 1990 -AY-68-28-310 Kgru Club 293555 983005 335 7 262 330 140.88 4- 3-92 1972 944 Ked AY-68-28-3f15 Sonterra Country S-1, Pence Drilling AY-68-28-305 Club 380 8-5/8 140.37 4- 3-92 AY-68-28-3f18 Sonterra Country 1971 928 293550 983008 Ked 103

Page 3

3

	(. <u> </u>	;		<u> </u>				<u> </u>		و ا	,) ,						1
--	---	------------	---	--	----------	--	--	--	----------	--	-----	--------------	--	--	--	--	--	---

Table 1. Records of Inventoried Wells (Continued)

Well Number	Well Owner	Other Well Identification	Driller	Year Com- pleted	Land- Surface Altitude (feet MSL)	Lati- tude	Longi- tuda	Producing Unit(z) 1/	Well Depth (feet)	<u>Casing</u> Diam- eter (inches)	Depth	Pump Depth (feet)		atic evel Data Date Mensured
AY-68-28-5cc2	Shavano Park	No. 3, AY-68-28-501	M. Gerfers	1955	948	293458	983236	Keđ	469	8	100	-	-	-
AY-68-28-5cf1	Shavano Park	No. 4, AY-68-28-502	-	1955	927	293440	983242	Ked	-	10	270	527	194.14 137.28	2-28-92 6- 5-92
AY-68-28-5fc1	Shavano Park	No. 8, AY-68-28-514	Haskin Pump Serv.	1982	884	293410	983244	Ked	510	16	273	-	143.57	6- 5-92
AY-68-28-5fc2	Shavano Park	No. 7, AY-68-28-513	Haskin Pump Serv.	1982	875	293404	983239	Ked	510	16	270	350	-	-
AY-68-29-1ab7	Sonterra Country Club	No. 4	-	-	990	293715	982938	Kgr	-	-	-	-	249.96	4- 8 -9 2
AY-68-29-1dg1	Sonterra Country Club	S-3, AY-68-29-101	Kutcher	1959	915	293604	982959	Ked	400	10	-	-	133.64	4- 7- 9 2
AY-68-29-1gf9	EUND	AY-68-29-103	Johnson Drilling	1957	953	293522	982912	Ked, Kgru	547	10	100	n/p	230.60	4- 1 -9 2

FOOTNOTES:

1/ Index to water-bearing units: K = Cretaceous ed = Edwards limestone gr(u/1) = Glen Rose Limestone (upper/lower) cc = Cow Creek Limestone s,ho = Sligo Limestone and Hosston Sand

Page 4

<u> </u>				· · · · · · · · · · · · · · · · · · ·			[3]		1	<u> </u>	~ 3	, second					~~ ?	
----------	--	--	--	---------------------------------------	--	--	-----	--	---	----------	-----	----------	--	--	--	--	-------------	--

TABLE 2. STRATIGRAPHIC UNITS AND THEIR WATER-BEARING PROPERTIES

System	Series	Stage/Group			Stratigraphic Unit	Hydrologic Unit		Approximate Thickness in Northern Bexar County (feet)	Character of Rocks	Water-Bearing Properties
		Washita		G	eorgetown Limestone			20	Marly limestone.	Yields moderate to large quantities of fresh water in areas where the full section is present.
		•	- P		Person Formation	Edwards Aquifer		170	Hard, massive, cherty limestone; marly clay and shale at bottom.	section is present.
		Fredericksburg	Edwards		Kainer Formation			280		
				formation	upper member	Upper Trinity Aquifer Unit		500	Alternating resistant and non- resistant beds of shale, nodular marl, and impure, fossiliferous limestone. Also contains two distinct evaporite beds.	Yields very small to small quantities of relatively highly mineralized water.
				Glen Rose	lower member			300	Massive, fossiliferous limestone grading upward into thin beds of limestone, dolomite, marl, and shale. Numerous caves and reefs occur in this member.	Yields small to large quantities of fresh to slightly saline water.
Cretaceous	Comanche	Trinity			Hensell Sand Member Bexar		up Aquifer	80	Red to gray clay, silt, sand, conglowerate, and thin limestone beds grading downdip into finer grained material.	
Cretateous	Conditions				Shale Member	Middle Trinity	y Group		Marl, calcareous shale, and sha- ley limestone, to silty dolomite.	
				k Formation	Cow Creek Limestone Member	Aquifer Ünit	Trinity	90	Massive, fossiliferous, white to gray, argillaceous to dolomitic limestone with local thinly bedded layers of sand, shale, and lignite. Holdic porosity near top.	
				Travis Peak	Hammett Shale Member			50	Dark blue to gray, fossiliferous, calcareous and dolomitic shale with thinly interbedded layers of limestone and sand.	Not known to yield water.
					Sligo Limestone Member	Lower Trinity		150	Sandy dolomitic limestone.	Yields small to moderate quantities of slightly saline to saline water.
					Hosston Sand Member	Aquifer Unit		220	Red and white conglomerate, sandstone, claystone, shale, dolomite, and limestone.	
			Pr	e-Cre	taceous rocks				Black, red, and green, folded shale, hard massive dolomite, limestone, sandstone, and slate.	Not known to yield water to walls in northern Bexar County.

(Modified from Ashworth, 1983)

		Land- Surface Altitude	Log	Top of Log	Bottom of Log			Depth to 1	Top of St	ratigraph swrface d	ic Unit 2	/	
Well Number	Well Owner	(feet MSL)	Туре Ц	(feet)	(feet)	Kgru	Kgrl	Kbs	Kcc	Khs	Ko	Kho	Paleozoi
RB-68-11-7	City of Boerne	1,420	C,R,G	6	476	-	-	323	393	-	-	-	-
RB-68-11-8	City of Boerne	1,381	C,R,G	6	422	-	-	274	344	-	-	-	-
RB-68-11-8	City of Boerne	1,385	C,R,G	6	390	-	-	237	310	-	-		-
AY-68-19-21c3	THDB	1,405	SP,R,C,G,N	Ó	894	-	53	318	397	484	526	668	882
AY-68-19-3ff5	Fair Oaks	1,342	G,N	0	552	-	96	356	442	-	-		-
AY-68-19-6	Hank Doughtry	1,170	C,G	4	471	-	20	301	384	454	-	-	-
AY-68-19-6c14	Camp Stanley	1,330	SP,R	325	550	-	-	445	537	•	505	-	-
AY-68-19-6fc1	Camp Stanley	1,320	SP,R	310	550	-	-	445	526	-	502	-	-
AY-68-19-8he6	EUND	1,230	C,R,G	4	693	-	382	-	-	-	-	-	-
AY-68-19-9	Leon Springs Elem.	1,130	Ċ,Ġ	5	672	-	212	498	-	-		-	-
AY-68-19-9	Mr. Harle	1,240	C,R,G	6	680	-	274	554	636	-	-	-	-
AY-68-19-9f16.1	SA Parks/Freidrich	1,160	G	3	486	-	323	-	-	-	-	-	-
AY-68-20-5gg5	Camp Bullis	1,180	C,SP,R,G	5	204	-	175	-	-	-	-	-	-
AY-68-20-6eh8	EUND	1,215	C,G	96	592	-	204	496	582	-	-	-	-
AY-68-20-7	Dominion Bridgewood	1,120	Ġ	0	679	-	180	468	546	-	-	-	-
AY-68-20-7	Dominion Bridgewood	1,125	C,R,G	3	606	-	223 272	510	594	-	-	-	-
AY-68-20-7	Knaupp	1,120	G	6	697	-	272	564	650	-	-	-	-
AY-68-20-8qf1	Camp Bullis	1,092	C,SP,R,G	0	550	-	371	-	-	-	-	-	-
AY-68-21-1	Oaks North	1,190	Ġ	6	>1,100	-	278	578	658	754	-	-	-
AY-68-21-7	Stone Oak	1,103	C,G	4	310	202	-	-	-	-	-	-	-
AY-68-21-8da6	Stone Oak	1,205	G	4	609	192	-	-	-	-	-	-	-
AY-68-26-6	Gallagher Ranch	1,220	G	3	424	79	-	-	-	-	+	-	-
AY-68-27-1	T.J. Natarajan	1,410	C,SP,R,G	6	850	131	606		-	-	-	-	-
AY-68-27-1	S. Talley	1,400	C,G	5	838	-	508	809	-	-	-	-	-
AY-68-27-2	S. Chaney	1,163	C,G	4	292	-	370	-	-	-	-	-	-
AY-68-27-3	Mr. Renthal	1,240	C,SP,R,G	0	748	67	537	-	-	-	-	-	-
AY-68-27-3bd8	SA (Golf Course)	1,252	C,R,G	7	764	22	496	-	-	-	-	-	-
AY-68-28-1	Redland Worth	1,045	C,G	3	698	664	-	-	-	-	-	-	-
AY-68-28-105	Redland Worth	1,050	G,N	6	1,260	105	560	868	951	1,038	1,080	1,188	-
AY-68-28-111	Redland Worth	1,060	SP,R,G	28	1,582	103	547	845	922	1,013	1,060	1,170	-
AY-68-28-2ab6	SA Parks/Eisenhower	1,175	C,R,G	4	856	-	474	784	-	-	-	-	-
AY-68-28-3c19.2	Sonterra	958	Ċ,G	4	1,148	329	806	1,114	-	-	-	-	-
AY-68-28-3fh5	Sonterra	894	C,G	0	1,226	346	853	1,156	-	-	-	-	-
AY-68-28-5	Redland Worth	995	C,SP,R,G	1	702	656	-	-	• -	-	-	-	-
AY-68-29-1gf9	EUND	953	C,R,G	4	527	456	-	-	-	+	-	-	-
-					570	558							

7

3

(3

3

 3

1

•

FOOTNOTES:

- 1/ Index to log types: C = caliper
 G = gamma
 SP = spontaneous-potential
 N = neutron

hs = Hammett Shale s = Sligo Limestone ho = Hosston Sand

3 ._____

TABLE 4. RESULTS OF PUMPING TESTS

Well Number	Producing Unit(s) <u>1</u> /	Test Date	Average Pumping Rate (gpm)	Total Drawdown (feet)	Pumping Time (min)	3-Hour Specific Capacity (gpm/ft)	Pumping Transmis- sivity (gpd/ft)	Recovery Transmis- sivity (gpd/ft)	Remarks
AY-68-19-3fel	Ks,ho	6-10-92	76	144.94	345	0.60	383	365	-
AY-68-19-6c15	Kgrl, Kcc	6- 2-92	103	68.22	300	1.66	1,149	1,429	-
AY-68-20-1da1	Kgrl, Kcc	5-27-92	103	36.54	310	3.48	1,207	1,721	Possible boundary.
AY-68-20-31g4	Kgrl, Kcc	5-18-92	15	8.28	270	1.82	4,500	4,714	-
AY-68-20-4ed9.1	Kgrl	6- 3-92	100	7.51	250	13.48	35,200	-	Insufficient recovery data.
AY-68-20-8da4	Kgrl	6- 4-92	350	33.21	335	<u>2</u> /	-	8,936	Pumping test interrupted.
AY-68-21-2hi9	Kgrl, Kgru	6-17-92	10.70	123.56	260	0.10	37	32	-
AY-68-27-1ac4	Kgru	6-16-92	30.50	2.90	340	12.45	19,171	24,400	Possible boundary.
AY-68-28-2ab6	Kgrl, Kcc	6- 8-92	28.20	5.00	300	5.88	10,340	-	Questionable recovery data.
AY-68-28-2hf8	Ked, Kgru	6- 5-92	330	5.73	320	59.25	96,800	58,865	-

FOOTNOTES:

1/	Index to producing units:	K = Cretaceous Period ed = Edwards limestone gr(u/l) = Glen Rose Limestone (upper/lower) cc = Cow Creek Limestone s,ho = Sligo Limestone and Hosston Sand
----	---------------------------	---

2/ 20-minute specific capacity was 13.63 gpm/ft prior to interruption.

Year	Public	Irrigation	Industrial	Domestic	Total
1960	110	50	550	590	1,300
1965	150	150	1,290	680	2,270
1970	200	120	2,170	770	3,260
1975	410	240	2,820	920	4,390
1980	720	180	2,630	1,080	4,610
1981	700	170	2,630	1,070	4,570
1982	890	190	2,560	1,060	4,700
1983	920	130	1,840	1,050	3,940
1984	1,110	170	2,550	1,040	4,870
1985	1,120	250	3,330	1,030	5,730
1986	1,540	250	3,210	1,020	6,020
1987	1,600	250	3,320	1,010	6,180
1988	1,860	300	3,290	1,000	6,450
1989	1,960	400	3,280	1,000	6,590
1990	1,700	400	3,260	990	6,350

TABLE 5. ESTIMATED PUMPAGE FOR THE TRINITY GROUP AQUIFERIN NORTHERN BEXAR COUNTY(Pumpage expressed in acre-feet)

ł

TABLE 6. RESULTS FROM CHEMICAL AND BACTERIOLOGICAL ANALYSES

.

(Results in milligrams per liter except temperatur, specific conductance, pH, and bacteriological data. Chemical analyses by Pollution Control Services; temperature and specific conductance by William F. Guyton Associates. Bacteriological analyses by Pollution Control Ervices, except those noted with an asterisk (*), which were analyzed by San Antonio Metropolitan Health District.)

					Types of						•					Total	Specific	Total		Water		cteriolo lonies/1	
Well Number	Producing Unit(s) <u>1</u> /	Date of Collec- tion	Pumping Rate (gpm)	Time Pumped (minutes)	Analyses Performed 2/	Cal- cium (Ca)	Magne- sium (Mg)	So- dium (Na)	Iron (Fe)	Manga- nese (Mn)	licar- conate HCO ₃)	Sul- fate (SO ₄)	Chlo- ride (Cl)	Fluo- ride (F)	Ni- trate as N	Dis- solved Solids	Conduct- ance (µmhos)	Hard- ness as CaCO3	Labora- tory pH	Temper- ature (°F)	Fecal Coli- form	Total Coli- form	Fecal Strepto- coccus
AY-68-18-9iel	Kgr	6-15-92	5 5	>1,440	I,B	87	15	9	0.55	[.] 0.03	286	49	14	0.23	0.84	344	577	274	7.2	69	0	0	2
AY-68-19-3fel	Ks,ho	6-10-92	80	. 355	I,B	337	193	200	0.77	0.04	250	1,561	136	2.90	0.17	2,900	3,220	1,630	7.1	76	0	0	0
AY-68-19-5fe8	Ks,ho	5 -14-9 2	150	3 recovers	I,B	37	33	240	0.26	<0.01	325	208	168	1.33	0.04	976	1,530	180	7.7	77	0	0	2
AY-68-19-6ci5	Kgrl,Kcc	6- 2-92	103	270	I,B	75	35	6	<0.01	<0.01	348	30	25	0.88	0.47	412	637	330	7.4	73	0	0	0
AY-68-19-6eb6	Kgrl,Kcc Kgrl,Kcc	5-12-92 6-10-92	198 190	220 110	I,B,P,V I,V	95 90	15 13	8 6	<0.01 <0.01	<0.01 <0.01	342 331	ר 7	15 12	0.46 0.36	1.50 1.75	360 264	520 563	298 276	7.4 7.2	72 72	<2 *	<4 * -	<2 *
AY-68-20-1da1	Kgrl,Kcc	5-27-92	103	200	I,B	74	21	7	0.01	<0.01	321	6	11	0.32	0.92	312	538	270	7.3	72	0	<2	<2
AY-68-20-3ig4	Kgrl,Kcc	5-18-92	15	200	I,B	92	17	7	0.01	<0.01	344	12	14	0.28	1.10	324	573	300	7.2	71	0	0	0
AY-68-20-4ed9.1	Kgrl	6- 3-92	100	230	I,B	89	11	8	0.09	<0.01	309	21	. 11	0.22	0.58	300	526	266	7.5	70	89	140	40
AY-68-20-7aa8	Kgr	5-14-92	196	>1,440	I,B,P	56	35	11	0.06	0.01	299	44	12	0.70	<0.01	316	560	280	7.4	75	0	0	25
AY-68-20-7hd6	Kgru	5-13-92	30	150	I,B,P	101	24	16	6.4	0.34	370	92	29	0.42	0.46	492	615	352	7.5	72	<4 *	330 *	1,100 *
AY-68-20-8da4	Kgrl	6- 4-92	350	350	I,B	91	11	6	0.01	<0.01	313	10	. 9	0.43	0.48	272	525	272	7.4	70	0	0	ο
AY-68-21-2hd4	Kgrl,Kcc	6-12-92	10	45	I,B	75	38	16	0.01	0.01	337	66	25	1.62	0.35	312	721	344	7.3	72	0	40	40
AY-68-21-2hi9	Kgr	6-17-92	11	250	I,B	505	160	10	0.06	0.02	295	1,650	19	3.60	0.17	2,436	2,590	1,760	7.2	73	0	0	ο
AY-68-21-5de8	Kgr Kgr	5-14-92 6-12-92	15 15	45 45	I,B,V V	112	110	54	0.23	0.01	371	274	דד -	3.85	<0.01	824	1,250 1,180	590 -	7.3	75 75	0	0 -	2,800
AY-68-27-1ac4	Kgru	6-16-92	31	305	I,B	212	34	10	<0.01	<0.01	229	464	15	1.23	0.18	964	1,250	666	7.1	73	0	1	0
AY-68-27-3bd8	Kgrl	5-13-92	400	>1,440	I,B,P	88	20	8	0.02	<0.01	335	52	13	0.50	1.10	388	590	304	7.8	72	<2 *	<4 *	<2 ★
AY-68-27-5be4	Kgru	6-16-92	10	25	В	-	-	-	-	-	-	-	-	-	-	-	1,060	-	-	73	1	18	0
AY-68-27-5be7	Kgru	5-19-92	10	55	I,B	67	53	17	0.01	0.01	289	108	35	2.46	0.88	312	754	384	7.5	73	0	0	0
AY-68-28-2ab6	Kgrl,Kcc	6- 8-92	30	>120	I,B	561	137	14	1.36	0.03	286	1,707	14	3.80	0.17	2,600	2,670	1,960	7.0	75	0	0	0
AY-68-28-2hf8	Ked,Kgru	6- 5-92	330	240	I,B	93	12	10	0.40	<0.01	295	16	22	0.13	1.12	340	580	280	7.3	73	5	280	18
AY-68-28-3fh5	Kgr,Kcc	5-13-92	200	>1,440	I,B,P	160	142	22	5.0	0.02	351	663	18	4.60	0.14	1,344	1,490	980	7.4	77	<4 *	<4 *	<4 *

FOOTNOTES:

-

~

 \sim

1/ Index to producing units: K = Cretaceous ed = Edwards limestone gr(u/1) = Glen Rose Limestone (upper/lower) cc = Cow Creek Limestone s,ho = Sligo Limestone and Hosston Sand

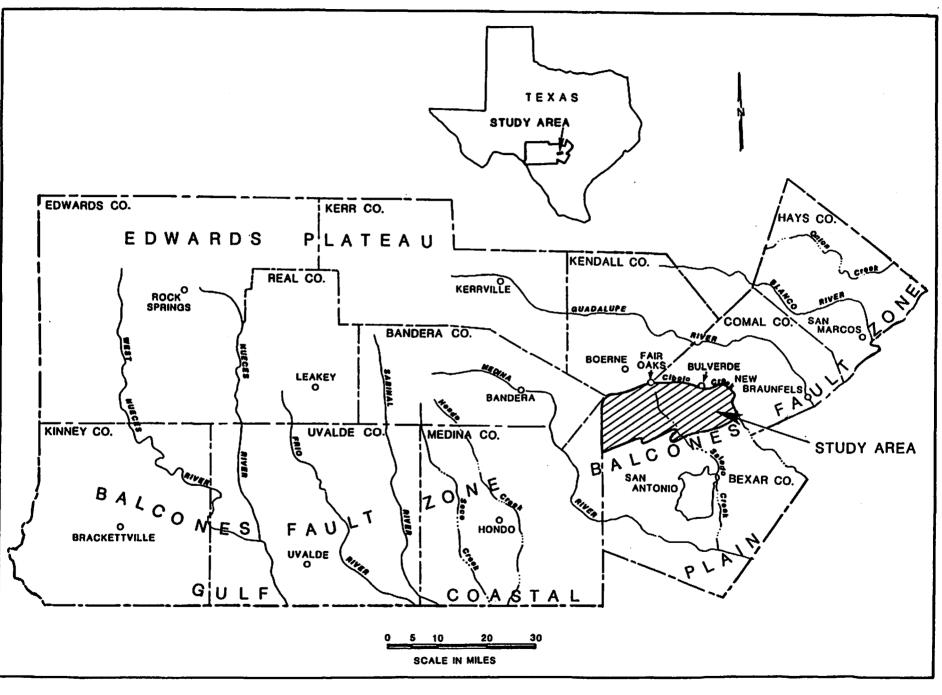
 $\frac{2}{2}$ Index to types of analyses: I = inorganic B = bacteriological

P = pesticide V = volatile organic

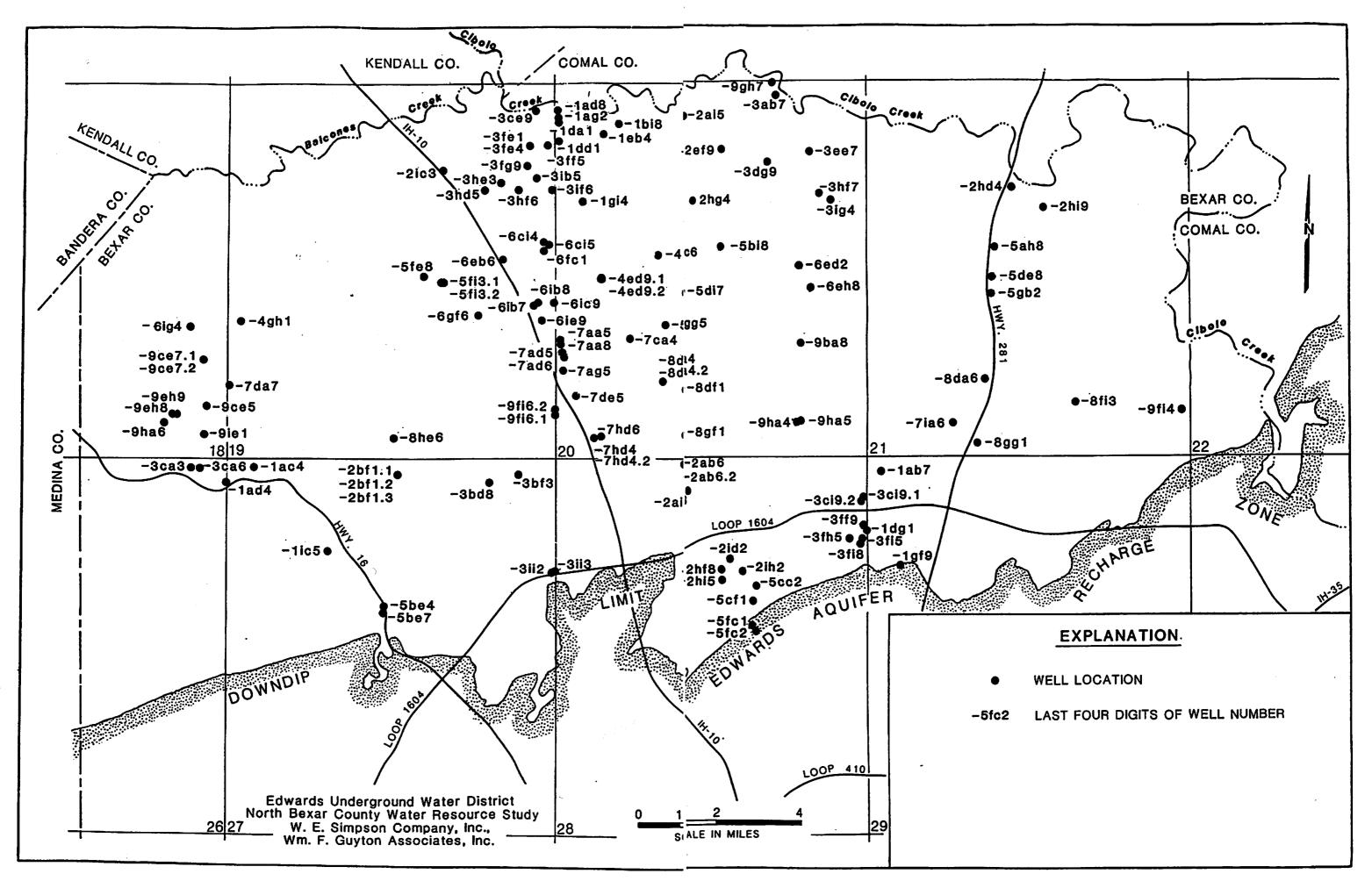
	Upper Trinity <u>(ac-ft)</u>	Middle Trinity <u>(ac-ft)</u>	Lower Trinity <u>(ac-ft)</u>	Total ^l (ac-ft)
Inflow				
Recharge from Rainfall	8,800	900	0	9,700
Interformational Leakage	0	(3,500)	(2,200)	-
Underflow	200	11,600	300	12,100
Total Inflow	9,000	16,000	2,500	-
Total Aquifer Inflow				21,800
Outflow				
Pumpage (1990)	300	5,300	700	6,300
Interformational Leakage	(3,500)	(2,200)	1,600	1,600
Underflow	3,400	9,000	300	12,700
Natural Discharge (Springs, Seeps, etc.)	1,800	ο	0	1,800
Total Outflow	9,000	16,500	2,600	-
Total Aquifer Outflow				22,400
Storage Change	0	-500	-100	-600

-fi

P


TABLE 7. ESTIMATED WATER BUDGET FOR THE TRINITY GROUP AQUIFERIN NORTHERN BEXAR COUNTY, 1990

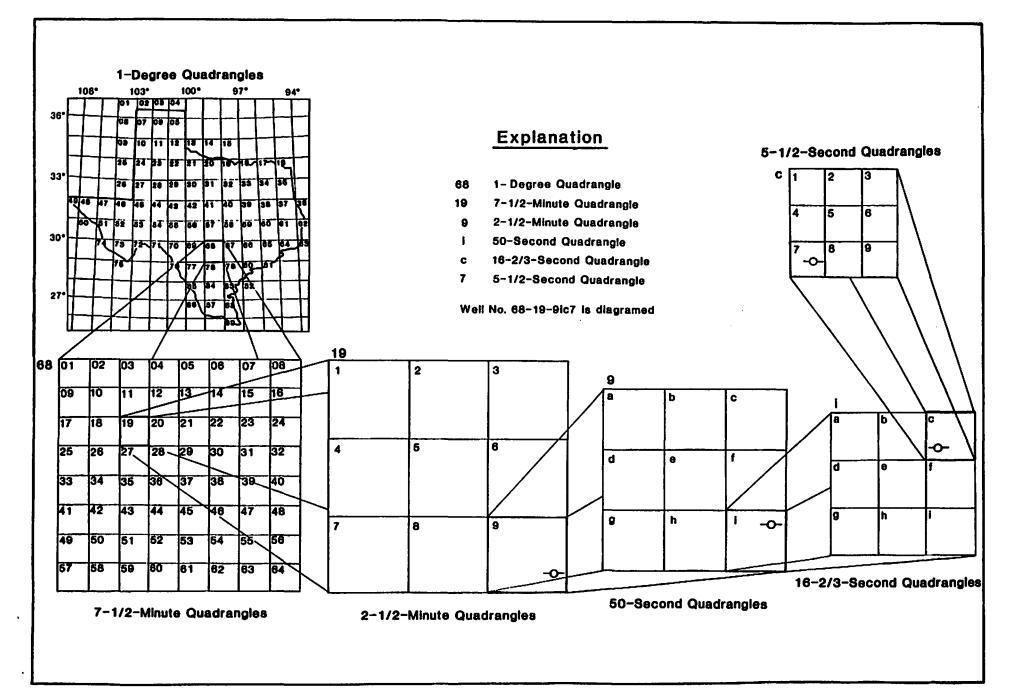
 $\frac{1}{2}$ Amounts shown within parentheses in the main part of table are the volumes of water that are transferred internally between the various units of the aquifer system and thus are not included in the total shown for water entering or leaving the full Trinity Group aquifer.


والمسار والمسار والمسار والمسار والمسار

1

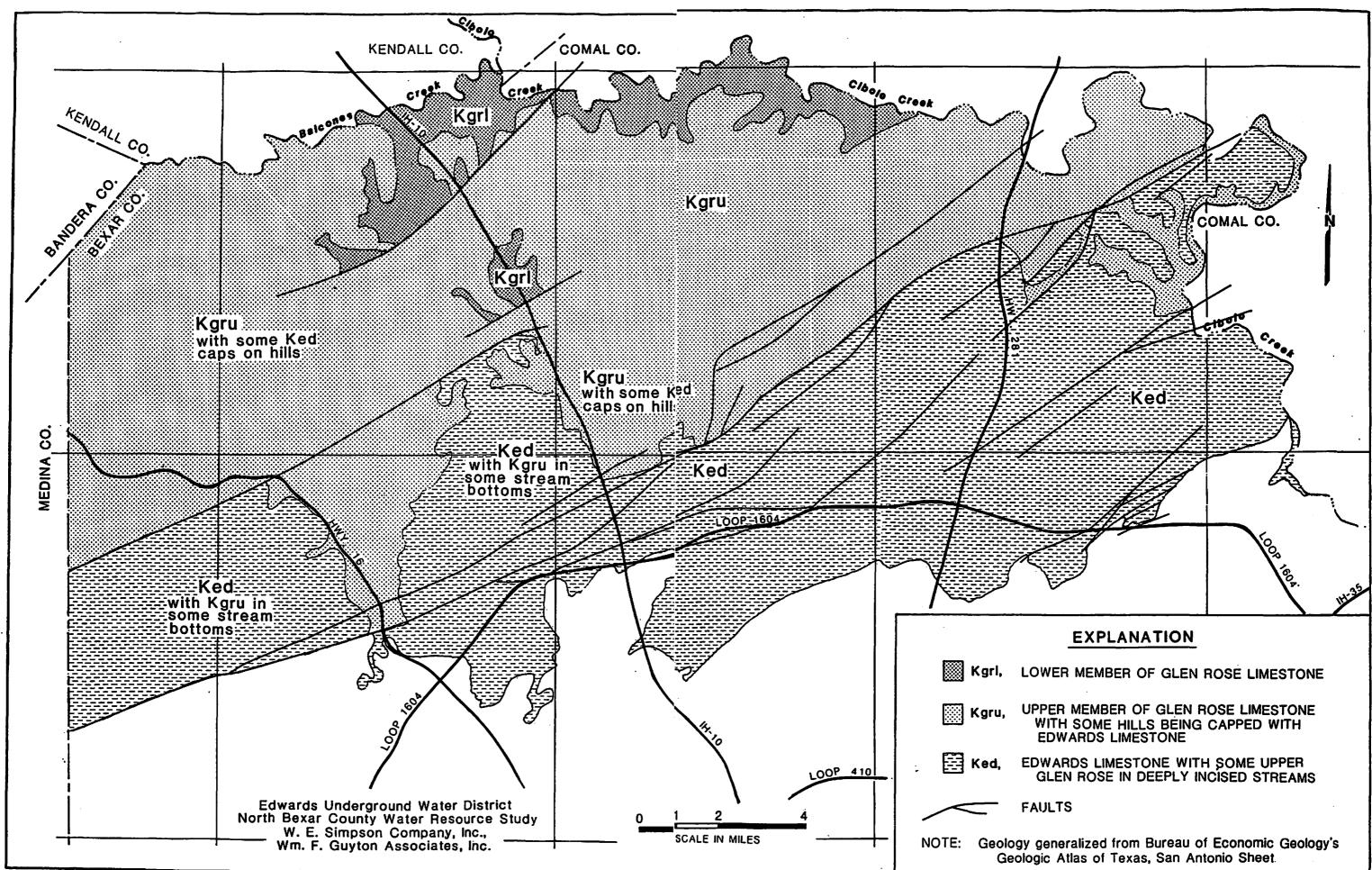
ίŅ,

LOCATION OF STUDY AREA

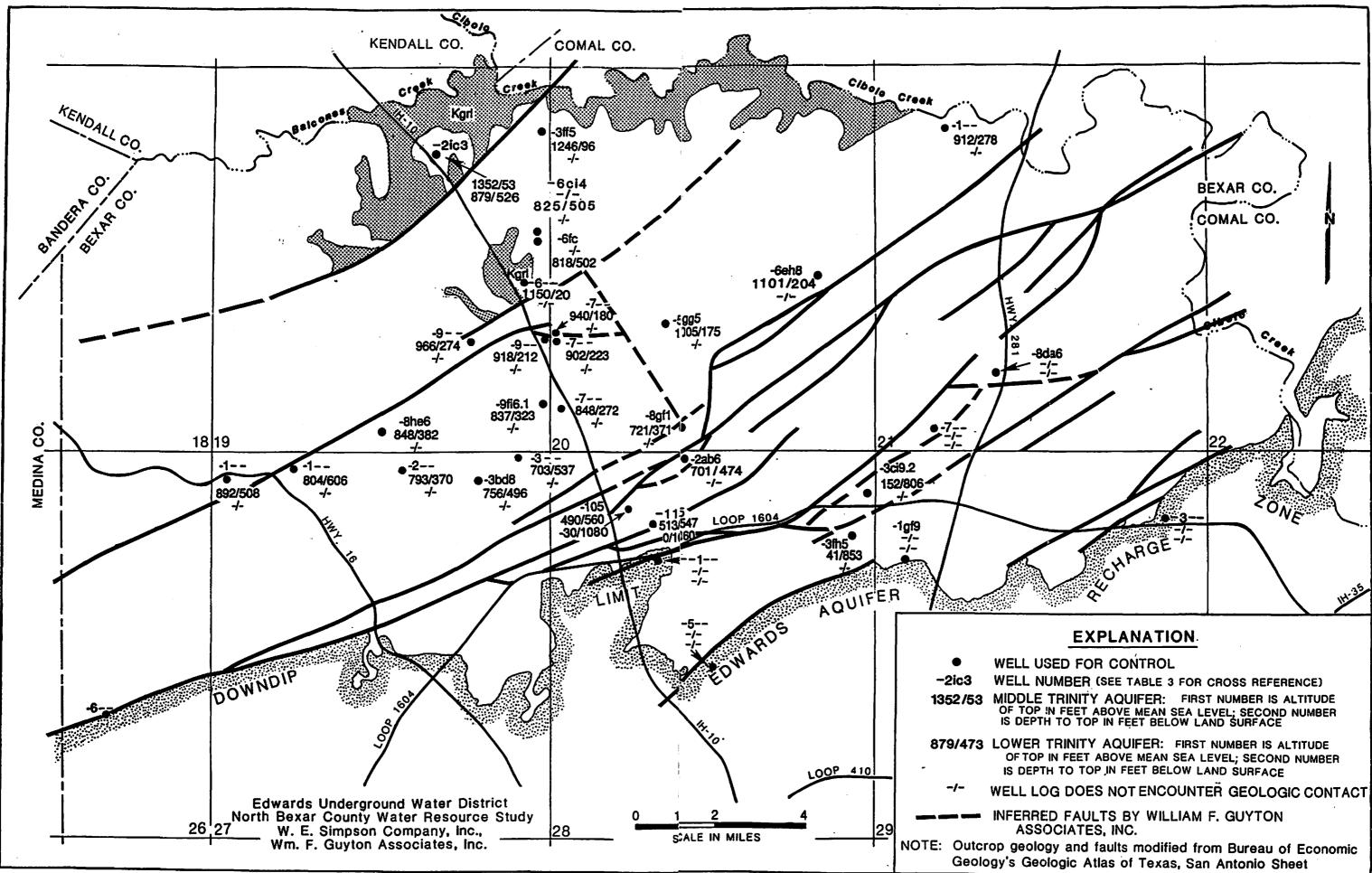

_

 $\hat{}$

~~-


. م

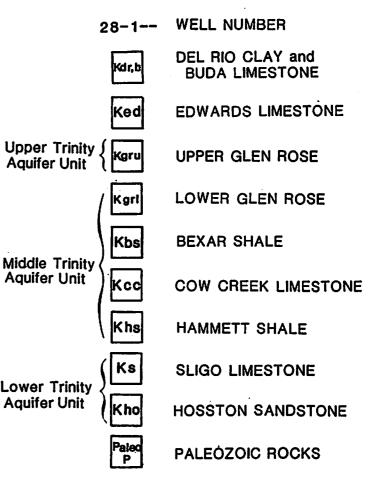
LOCATIONS OF INVENTORIED WELLS



WELL- NUMBERING SYSTEM

Figure 3

SURFACE GEOLOGY MAP

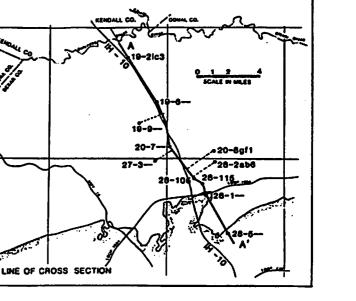
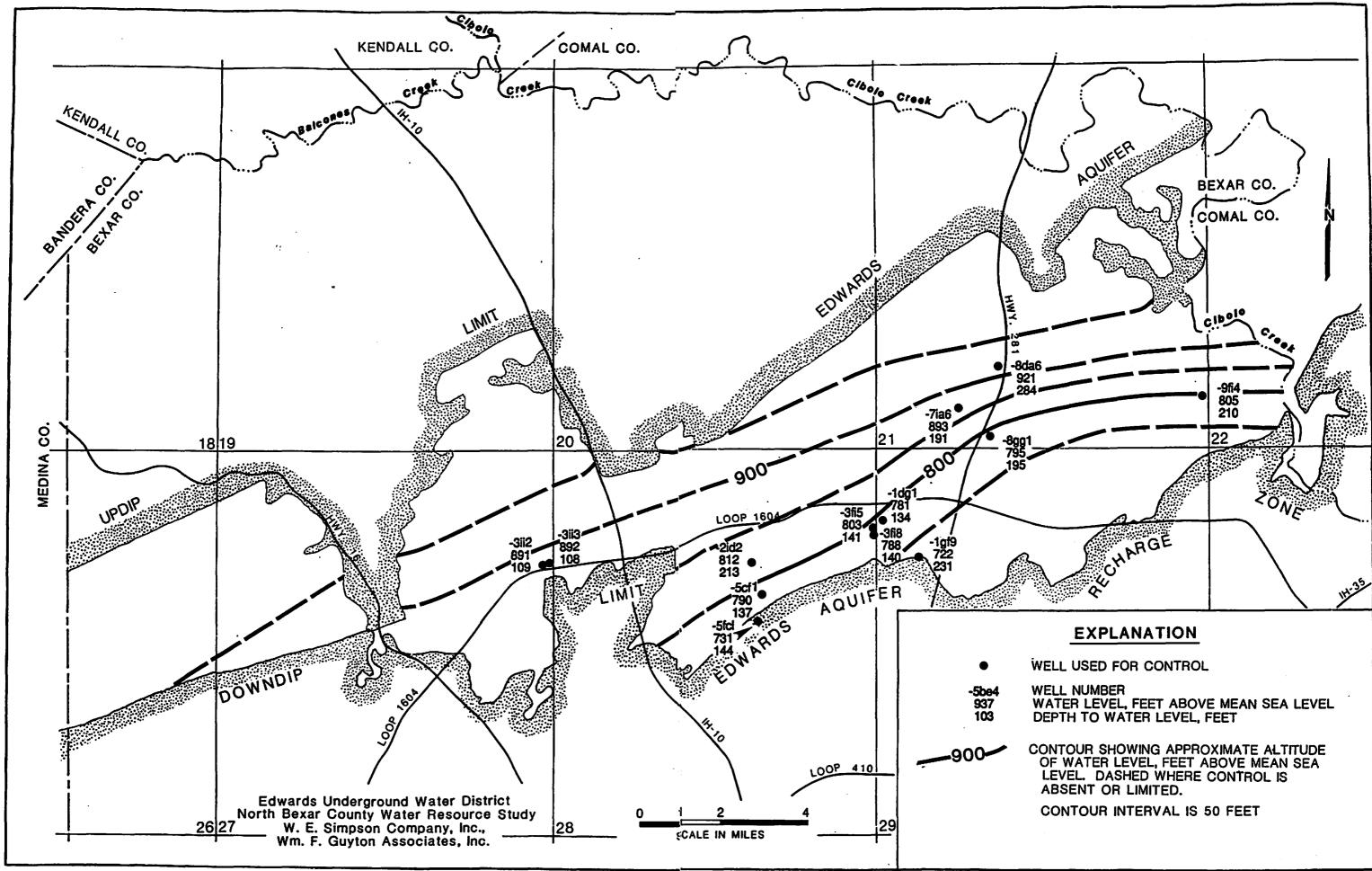
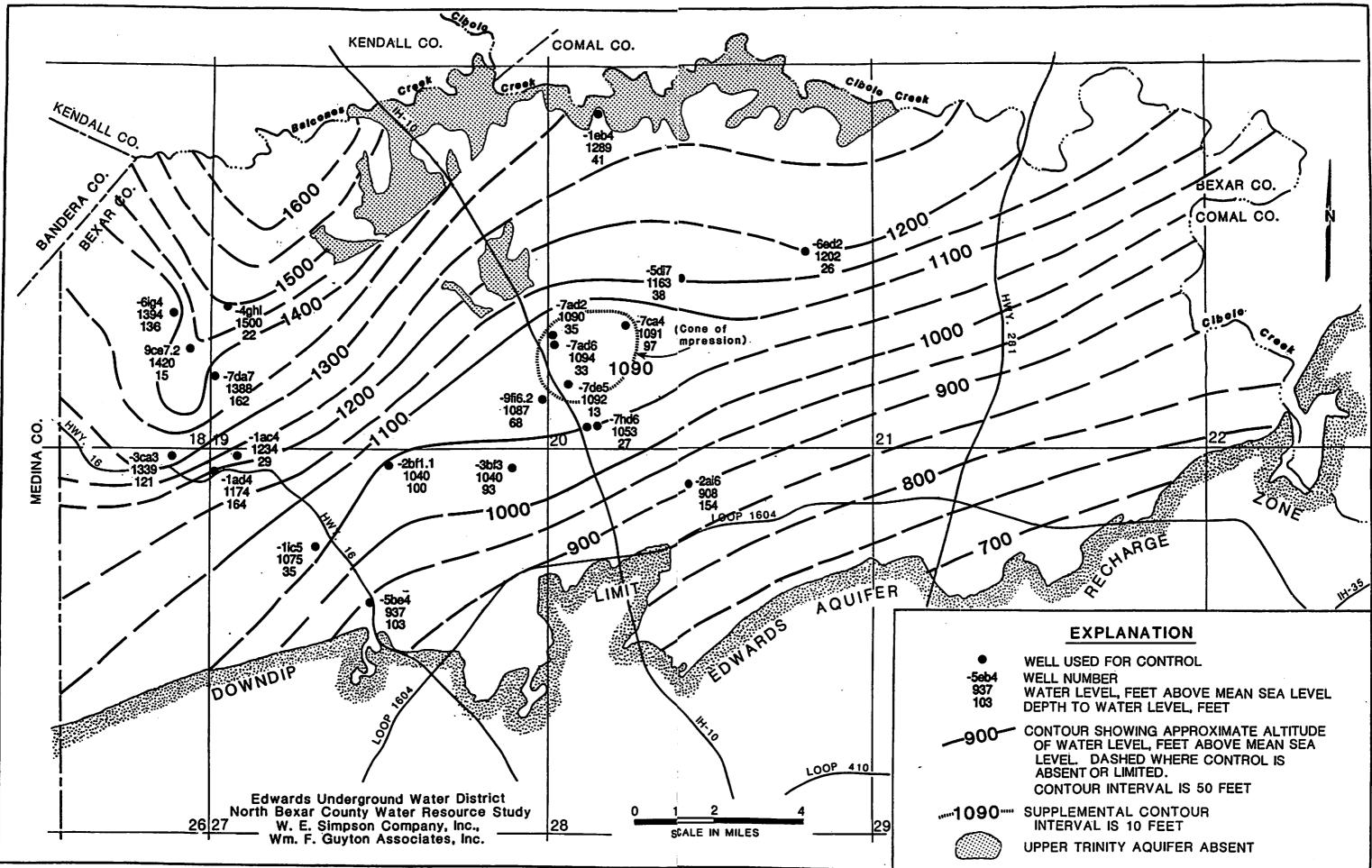


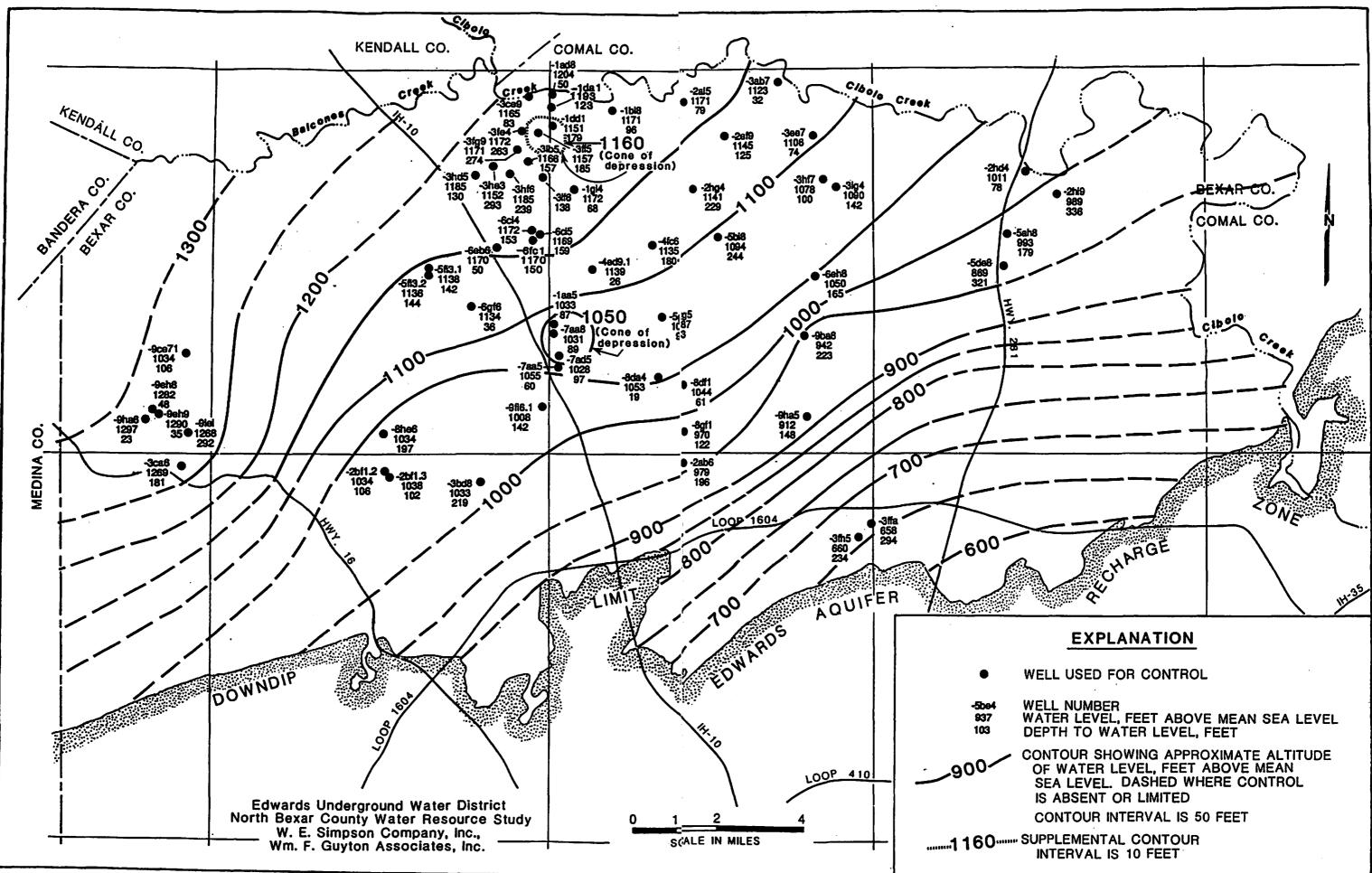
STRUCTURAL TRENDS IN NORTHERN BEXAR COUNTY

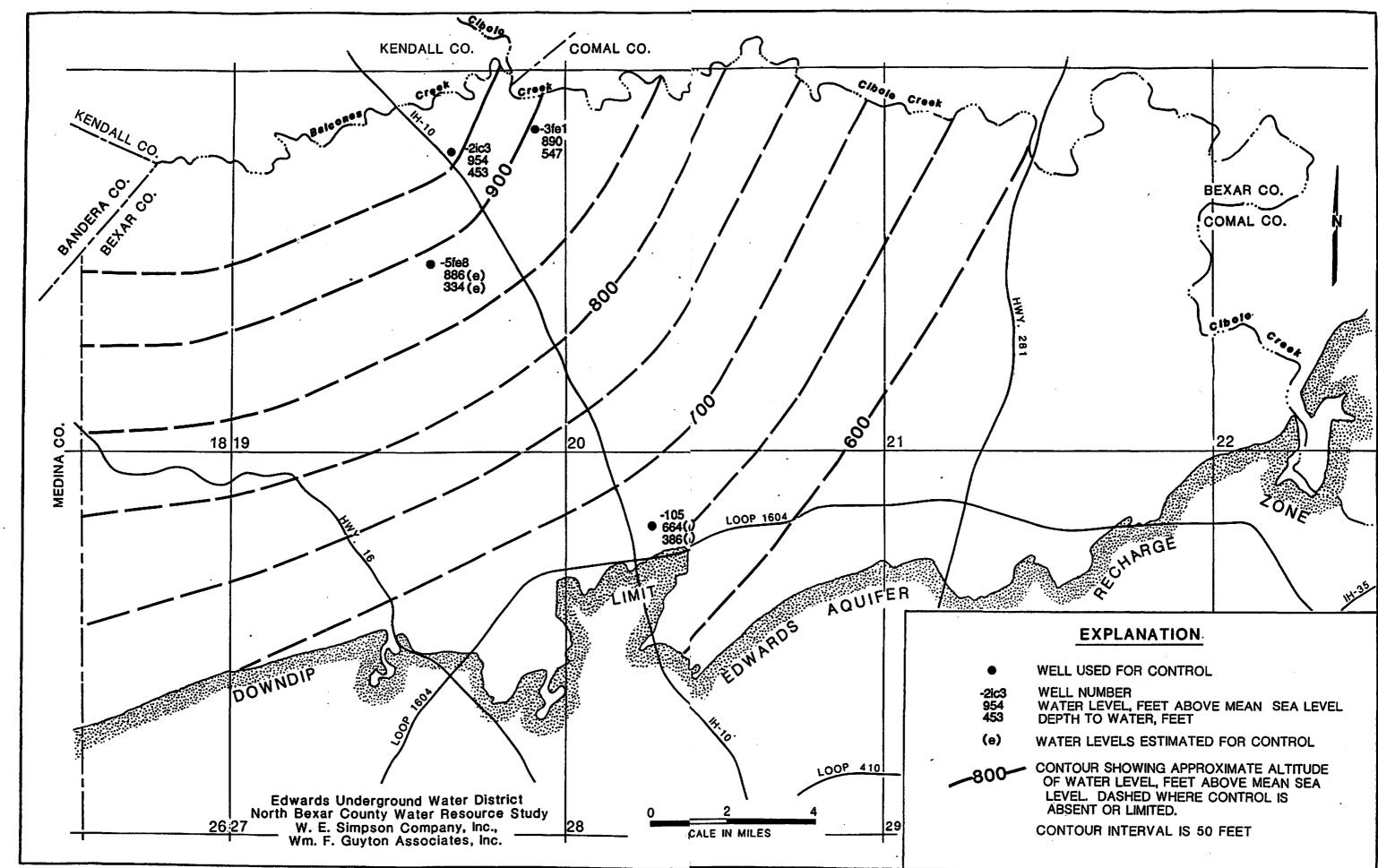
Α' Α 20/29/2010 2010 2011 2011 2011 20171 27-31 FEET FEET 1500 1500 r APPROXIMATE LAND SURFACE Kgrl Kara Kbs Kgri Kġru 1000 1000 Ked Ked Kcc Kgru Kgru Kdr,b Khg Kbs 1 Ks Middle Trinity Aquifer Unit Kgru Kġrl Kcc Kgr Kgrl Kho Ked Ķ٥ Kbs Kĥ Ked Kcc Kcc 500 Kar 500 Kbs Kgrl WEL. Kh Kcc T Paleo Kho Ks Kbs ί¢οs Kbs Ks Kha Kgi Kcc Kc Kart Ks Kha Kha Kho Khs Lower Trinity Aquifer Unit Paleo ٢hc Kgru K٥ Ks Ks Mean Mean Sea Level Kho Sea Level FAULT Kgru Paleo P Ks Kho MOVEMENT. Paleo Kg Kgrl Kha P Paleo Kgrl -500 -500 Kcc Pale Kbs Khs Kcc Ks Khs Ks Kho -1000 1000 Kho Paleo Paleo J-1500 -1500 Vertical Scale is Greatly Exaggerated SCALE IN MILES

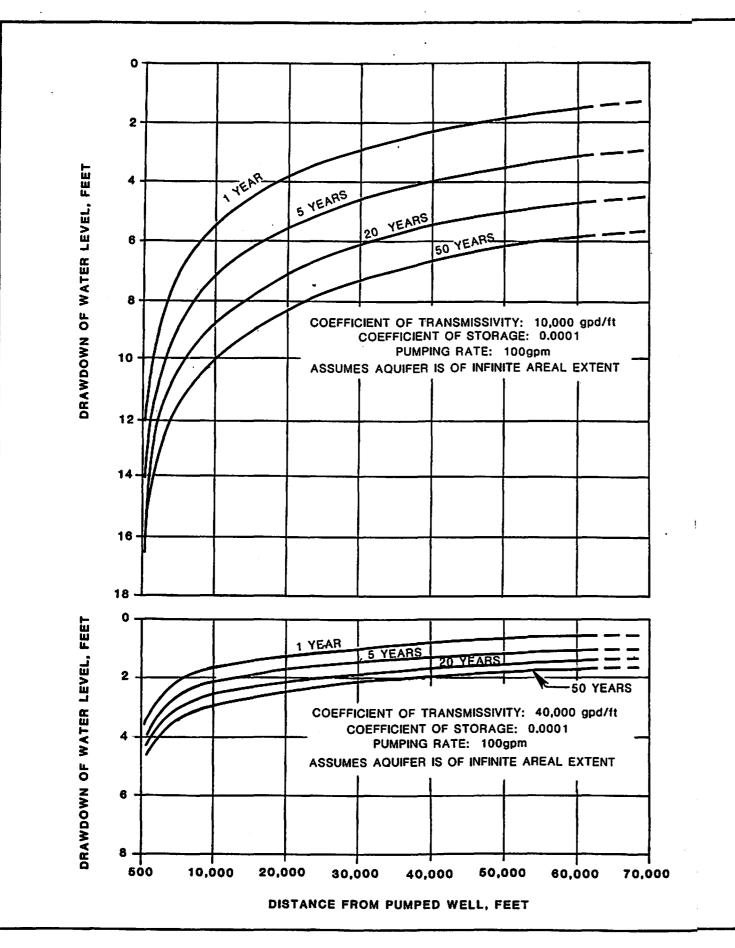
GEOLOGIC CROSS SECTION A - A'

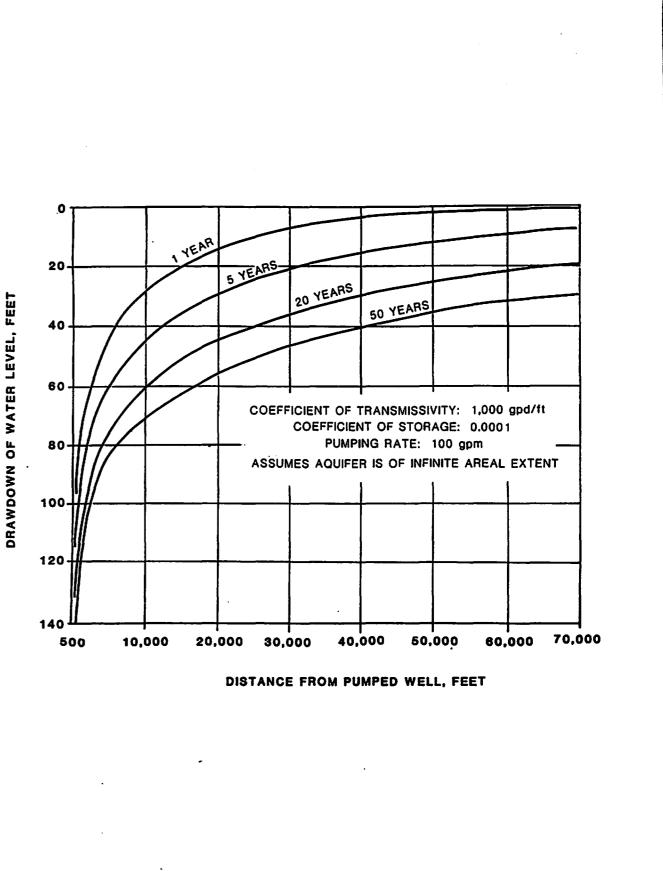
Explanation

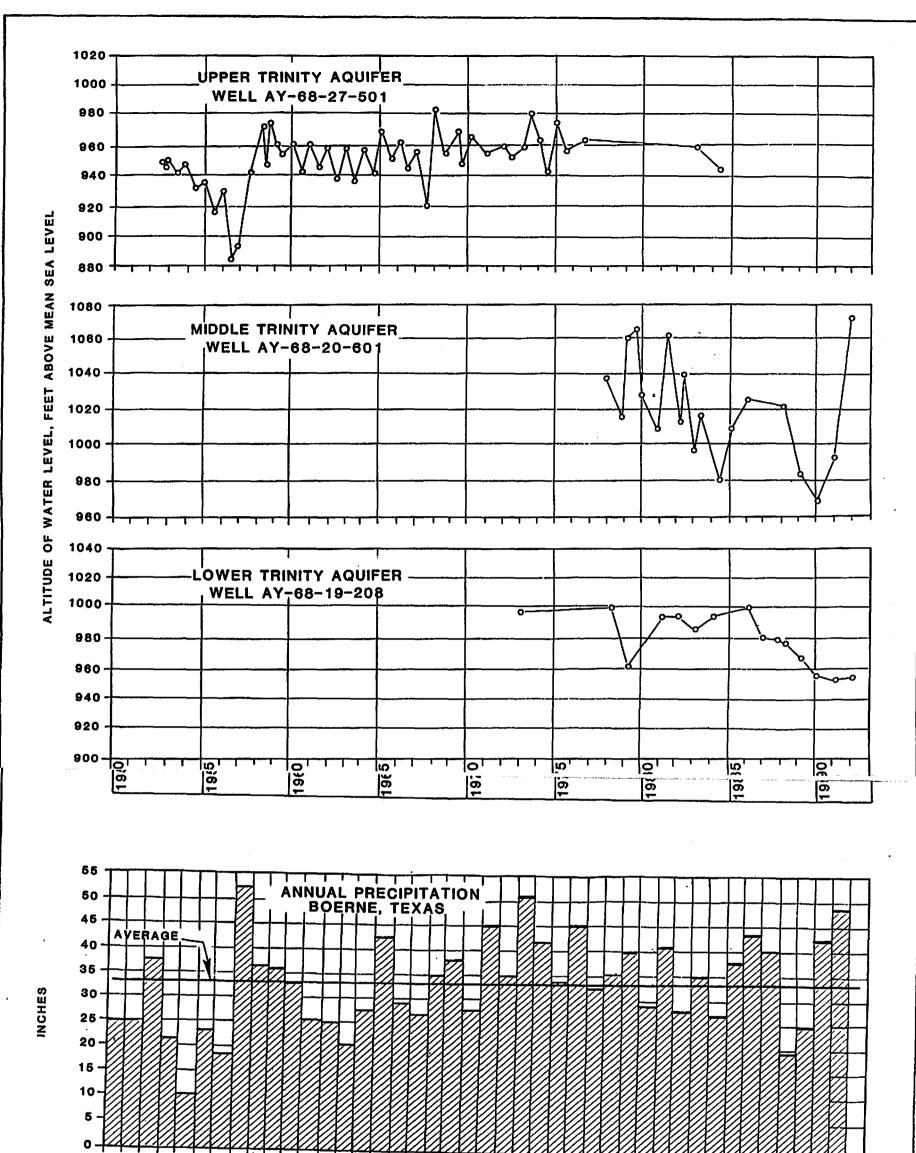

Figure 6

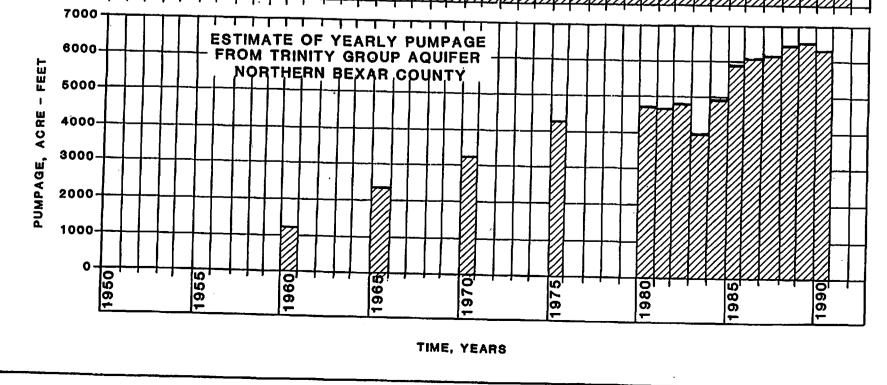

ALTITUDE OF AND DEPTH TO WATER LEVELS IN EDWARDS AQUIFER, SPRING 1992


ALTITUDE OF AND DEPTH TO WATER LEVELS IN UPPER TRINITY AQUIFER, SPRING 1992



ALTITUDE OF AND DEPTH TO WATER LEVELS IN MIDDLE TRINITY AQUIFER, SPRING 1992


ALTITUDE OF AND DEPTH TO WATER LEVELS IN LOWER TRINITY AQUIFER, SPRING 1992



DRAWDOWN OF WITER LEVELS CAUSED BY PUMPING

·]

WATER LEVELS, PUMPAGE, AND PRECIPITATION

Figure 12

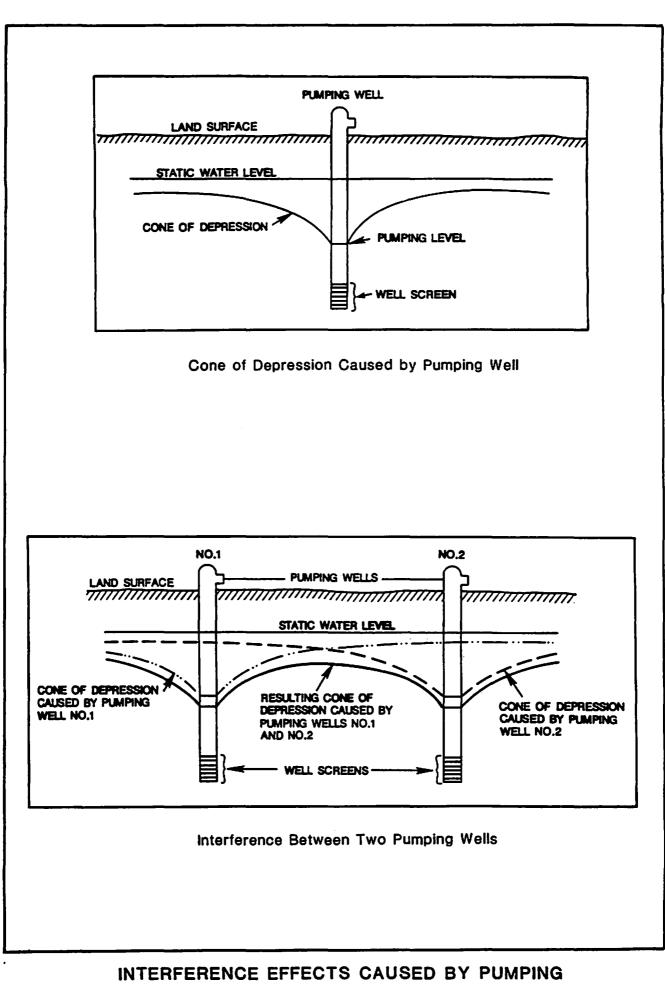
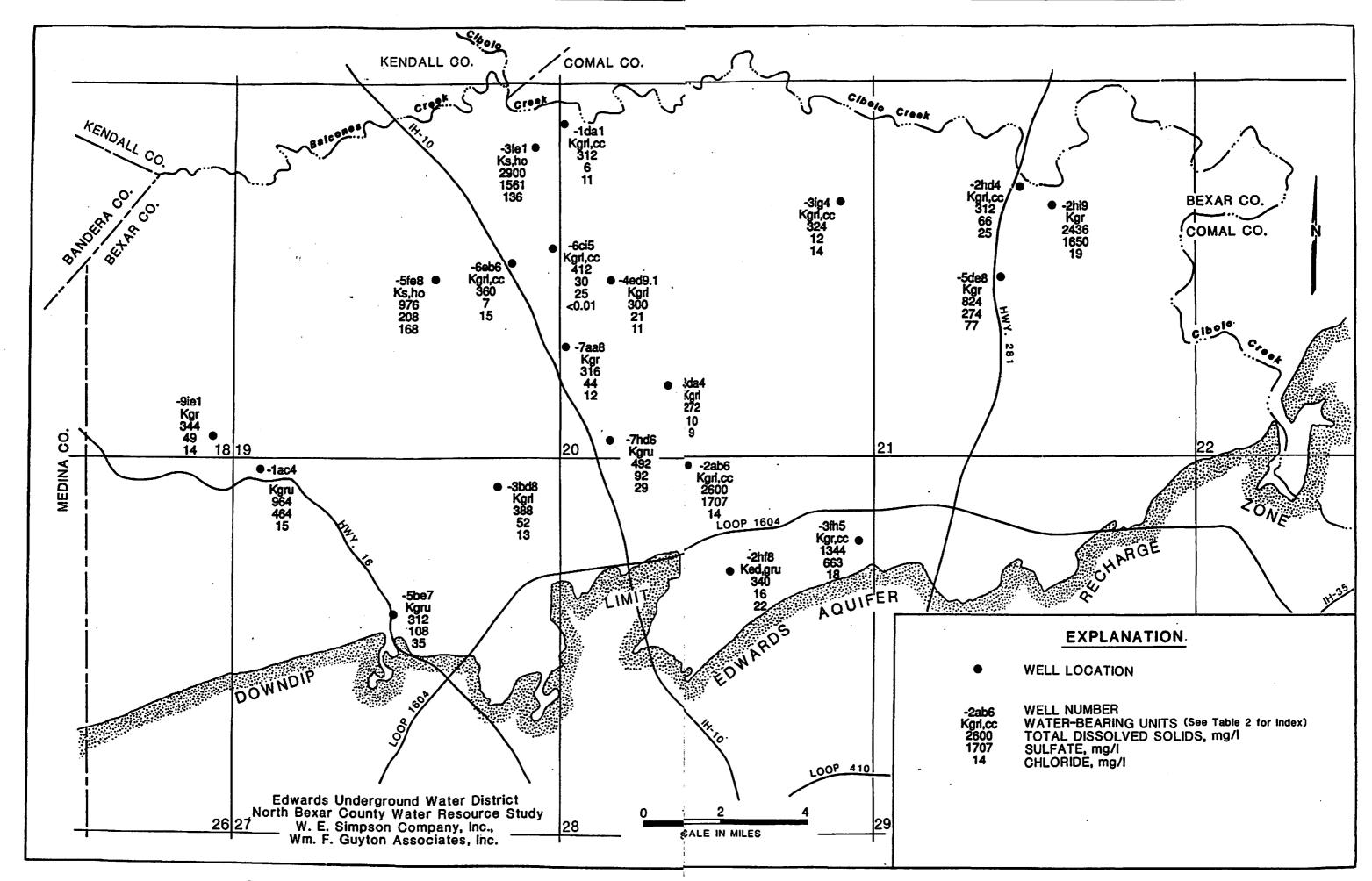
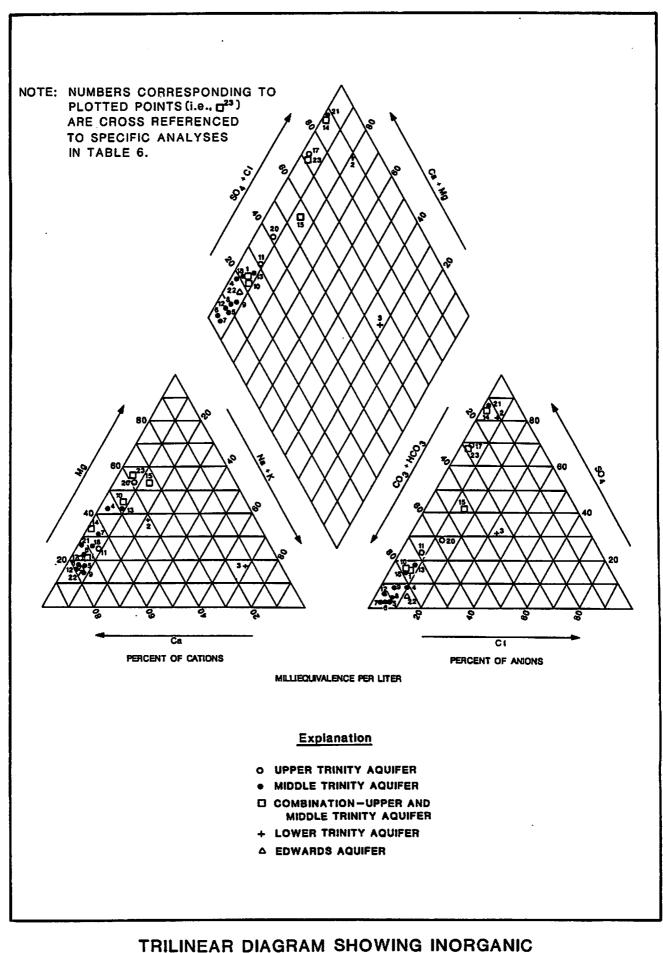




Figure 13

.____

TOTAL DISSOLVED SOLIDS, SULFATE, AND CHLORILE CONTENT OF WATER FROM SELECTED WELLS

ANALYSES FOR SELECTED WELLS

APPENDIX 1

.

•

Laboratory Reports of Inorganic Chemical Analyses

.

435 Isom Road	l, Suite 228	San Antonio,	TX 78216	(512)340-0343
	mical Analysis		Date Received:	6/15/92
PCS Sample #	24035		Date Reported:	6/22/92
To: Wm. F. Gu	yton & Associates	3		
3355 Bee	Cave Rd., Suite 4			
Austin, I	'x. 78746			
Attn: Mr. Bil	l Klemt			
Sample ID: We	11 Water #18-918	L		
Date Sampled:	6/15/92	-		
Time Sampled: Date Analyzed				
Date Mary 260				
Parameter	Concentration			
PH	7.2 S.U.	. Nitrate N	0.84 mg	//1
Sp.Cond.	520 umhos/cm		9 mg	
TDS	344 mg/]		0.55 mg	
T.Hardness Calcium	274 mg/]		-	
Chloride	87 mg/] 14 mg/]		15 mg	[/⊥
Sulfate	49 mg/l			
T.Alkalinity	235 mg/1			
Fluoride	0.23 mg/1			
Bicarbonate	286 mg/1			

CONTROL

SERVICES

Approved By:

(M)

1992

M

M

ଲ୍ଲ {

[100

œ

.

luch Wallph

POLLUTION

Chuck Wallgren Owner

Pollution Control Services Mineral Analysis QA Check - Stabler Formula

.

PCS Sample#: 2	4035		
Enter cation r	esults in mg/l		
mg/l Iron:	0.55	me/l Iron:	0.0197
mg/l Ca : mg/l Mg :	87.00 15.00	me/l Ca : me/l Mg :	4.3413 1.2330
mg/l Na : mg/l K :	9.00	me/l Na :	0.3915
mg/1 K:	0.03	me/1 K :	0.0000
mg/l Mn :	0.03	me/l Mn :	0.0011
	Sur	<pre>n Cations(me/l):</pre>	5.9866
Enter anion re	sults in mg/l		
mg/1 CO3 :		me/l CO3 :	0.0000
mg/l HCO3:	286.00	me/l HCO3:	4.6904
mg/1 SO4 :	49.00	me/1 SO4 :	1.0192
mg/l Cl- :	14.00	me/1 C1- :	0.3948
mg/l Fl- :	0.23	me/l Fl- :	0.0121
mg/l NO3 :	0.84	me/l NO3N:	0.0135
	Sur	n Anions (me/l):	6.1300

***ERROR = : -1.1835**

. . .

ľ

POLLUTION CONTROL SERVICES

435 Isom Road, Suite 228 San Antonio, TX 78216 (512)340-0343 Report of: Chemical Analysis Date Received: 6/10/92 **PCS Sample # 24001** Date Reported: 6/15/92 To: Wm. F. Guyton & Associates 3355 Bee Cave Rd., Suite 401 Austin, TX 78746 Attn: Mr. Bill Klemt Sample ID: Well Water #19-3FE1 Date Sampled:6/10/92 Time Sampled: Date Analyzed: 6/10/92 Parameter Concentration Parameter Concentration рH 7.1 S.U. Nitrate N 0.17 mg/l Sp.Cond. 2830 umhos/cm Sodium 200 mg/l TDS 0.77 mg/l 2900 mg/1 Iron T.Hardness 1630 mg/l Manganese 0.04 mg/l Calcium 337 mg/l Magnesium 193 mg/l Chloride 136 mg/l 1561 mg/l Sulfate T.Alkalinity 205 mg/l Fluoride 2.90 mg/l

Approved By: Cluch Wallpun

250 mg/l

Chuck Wallgren Owner

Bicarbonate

#19-35=1

Pollution Control Services Mineral Analysis QA Check - Stabler Formula

PC	CS Sample#: 24	001		
e En	nter cation re	esults in mg/l		
' ng ng M ng	// Iron: // Ca : // Mg : // Na : // K : // K :	0.77 337.00 193.00 200.00 0.04	me/l Iron: me/l Ca : me/l Mg : me/l Na : me/l K : me/l Mn :	0.0276 16.8163 15.8646 8.7000 0.0000 0.0015
		Su	m Cations(me/l):	41.4100
r En	ter anion res	ults in mg/l		
mg mg mg mg	// CO3 : // HCO3: // SO4 : // C1- : // F1- : // NO3 :	0.00 250.00 1561.00 136.00 2.90 0.17	<pre>me/l CO3 : me/l HCO3: me/l SO4 : me/l Cl- : me/l Fl- : me/l NO3N:</pre>	0.0000 4.1000 32.4688 3.8352 0.1525 0.0027
P		Su	m Anions (me/l):	40.5592

ERROR = : 1.0380

AMA STATE

POLLUTION CONTROL SERVICES

435 Isom Road	Suite 228	San	Antonio,	тх	78216	(512)340-0343
Report of:Chem	nical Analysis			Date	Received:	5/14/92
PCS Sample # 2	23574			Date	Reported:	• •
	rton & Associate Cave Rd., Suite					
Austin, TX	-					
Attn: Mr. Bill	Klemt					
	1 Water #19-5FE	8				
Date Sampled: 5 Time Sampled:	0/14/92					
Date Analyzed:	5/17/92					
Parameter	Concentration					
PH	7.7 S.U	. 1	Nitrate N		0.04 m	a/1
Sp.Cond.	1490 umhos/c		Sodium		240 m	ng/l
TDS	976 mg/		Iron		0.26 m	
T.Hardness Calcium	180 mg/		langanese		<0.01 m	
Chloride	37 mg/ 168 mg/		lagnesium		33 m	IG/ I
Sulfate	208 mg/					
T.Alkalinity	266 mg/					
Fluoride	1.33 mg/	1				
Bicarbonate	325 mg/	1				

.

Approved By:

ļ

ł.

hund Wallper

Chuck Wallgren

Pollution Control Services Mineral Analysis QA Check - Stabler Formula $\#19-5FE^{8}$

,

	PCS Sample #: 235	74		
ø	Enter cation res	ults in mg/l		
	mg/l Iron: mg/l Ca : mg/l Mg : mg/l Na :	0.26 37.00 33.00 240.00	me/l Iron: me/l Ca : me/l Mg : me/l Na : me/l K	0.0093 1.8463 2.7126 10.4400
	mg/l K : mg/l Mn :	0.01	me/l K : me/l Mn :	0.0000
		S	um Cations(me/l):	15.0086
@	Enter anion resu	lts in mg/l		
	mg/l CO3 : mg/l HCO3: mg/l SO4 : mg/l Cl- : mg/l Fl- :	325.00 208.00 168.00 1.33	me/l CO3 : me/l HCO3: me/l SO4 : me/l Cl- : me/l Fl- :	0.0000 5.3300 4.3264 4.7376 0.0700
m	mg/1 NO3 :	0.04	me/l NO3N:	0.0006
		S	um Anions (me/l):	14.4646

%ERROR = : 1.8457

P

1000

Ē

쪵

) (III) خمنغن

1981

l

POLLUTION CONTROL SERVICES

435 Isom Road,	<u>, Suite 228 S</u>	an Antonio,	<u>TX 78216</u>	<u>(512)340-034</u>
Report of:Chen PCS Sample # 2			Date Received: Date Reported:	6/2/9 6/15/9
3355 Bee C Austin, TX		91		
Attn: Mr. Bill	L Klemt			
Sample ID: Wel Date Sampled: Time Sampled: Date Analyzed:				
Parameter	Concentration	Parameter	Concentra	tion
pH Sp.Cond. TDS T.Hardness Calcium Chloride Sulfate T.Alkalinity Fluoride	7.4 S.U. 590 umhos/cm 412 mg/l 330 mg/l 75 mg/l 25 mg/l 30 mg/l 285 mg/l 0.88 mg/l	Sodium Iron Manganese		/1 /1 /1

Approved By:

M Ŀ

() (

(1) |-|-

[] [____

颐 ŀ

쪥

ត្រូត

Ŀ

(Q.2) ľ.

阙 ľ

-Wallyun luc

Chuck Wallgren Owner

-#14 -62IS

.

Pollution Control Services Mineral Analysis QA Check - Stabler Formula

.

PCS Sample#: 2385	1		
Enter cation resu	lts in mg/l		
mg/l Iron: mg/l Ca : mg/l Mg : mg/l Na : mg/l K : mg/l Mn :	0.00 75.00 35.00 6.00 0.00	me/l Iron: me/l Ca : me/l Mg : me/l Na : me/l K : me/l Mn :	0.0000 3.7425 2.8770 0.2610 0.0000 0.0000
Enter anion resul	Su	m Cations(me/l):	6.8805
	•••		
<pre>[mg/l CO3 : mg/l HCO3: mg/l SO4 :</pre>	0.00 348.00 30.00	me/l CO3 : me/l HCO3: me/l SO4 :	0.0000 5.7072 0.6240
mg/l Cl- : mg/l Fl- : mg/l NO3 :	25.00 0.88 0.47	me/l Cl- : me/l Fl- : me/l NO3N:	0.0240 0.7050 0.0463 0.0076
$\frac{1}{2}$		n Anions (me/l):	7.0901

ERROR = : -1.5003

- . .

1 1 1

.

POLLUTION CONTROL SERVICES

435 Isom Road,	Suite 228 Si	<u>an Antonio,</u>	TX 78216	(512)340-0343
Report of:Cher PCS Sample # 2	nical Analysis 23549		Date Received: Date Reported:	-//
	yton & Associates Cave Rd., Suite 403	1		
Austin, T	-	-		
Attn: Mr. Bill	l Klemt			
Sample ID: We	11 Water #19-6876			
Date Sampled:	5/12/92			
Time Sampled:	E /1E /00			
Date Analyzed	: 5/15/92			
Parameter	Concentration			
рН	7.4 S.V.	Nitrate N	1.5 mg	g/l
Sp.Cond.	530 umhos/cm	Sodium	8 m	
TDS	360 mg/l	Iron	<0.01 mg	g/l
T.Hardness	298 mg/l			
Calcium	95 mg/l	Magnesium	15 mg	g/l
Chloride	15 mg/l			
Sulfate	7 mg/l			
T.Alkalinity				
Fluoride	0.46 mg/l			
Bicarbonate	342 mg/l			

Approved By:

1000 | , | ,

(M)

1000

ľ

1993

1

L Wallpun luch

Chuck Wallgren Owner

Pollution Control Services Mineral Analysis QA Check - Stabler Formula

Enter cation rea			
mg/l Iron:	0.01	me/l Iron:	0.0004
mg/l Ca :	95.00	me/l Ca :	4.7405
mg/l Mg :	15.00	me/l Mg :	1.2330
ng/l Na :	8.00	me/l Na :	0.3480
mg/l K :		me/l K:	0.0000
ng/l Mn :	0.01	me/l Mn :	0.0004
	Su	n Cations(me/l):	6.3223
Enter anion resu	ults in mg/l		
	ilts in mg/l	me/1 CO3 :	0.0000
mg/l CO3 : mg/l HCO3:	11ts in mg/l 342.00	me/l CO3 : me/l HCO3:	0.0000 5.6088
mg/l CO3 : mg/l HCO3: mg/l SO4 :			
mg/l CO3 : mg/l HCO3: mg/l SO4 :	342.00	me/l HCO3: me/l SO4 : me/l Cl- :	5.6088
mg/l CO3 : mg/l HCO3: mg/l SO4 : mg/l Cl- : mg/l Fl- :	342.00 7.00	me/l HCO3: me/l SO4 :	5.6088 0.1456
mg/l CO3 : mg/l HCO3: mg/l SO4 : mg/l Cl- :	342.00 7.00 15.00	me/l HCO3: me/l SO4 : me/l Cl- :	5.6088 0.1456 0.4230

ERROR = : 0.7690

Ľ

POLLUTION CONTROL SERVICES

435 Isom Road	<u>, Suite 228 S</u>	<u>an Antonio,</u>	<u>TX 78216</u>	(512)340-0343
Report of:Cher PCS Sample # 2	nical Analysis 24003		Date Received: Date Reported:	6/10/92 6/15/92
3355 Bee Austin, T Attn: Mr. Bill Sample ID: We	l Klemt 11 Water #19-6GF6(
Date Sampled: Time Sampled: Date Analyzed				
Parameter	Concentration	Parameter	Concentrat	tion
pH Sp.Cond. TDS T.Hardness Calcium Chloride Sulfate T.Alkalinity Fluoride	7.2 S.U. 550 umhos/cm 264 mg/l 276 mg/l 90 mg/l 12 mg/l 7 mg/l 271 mg/l 0.36 mg/l	Sodium Iron	6 mg <0.01 mg <0.01 mg	/1 /1 /1

Approved By: Thuck Wallpu

Chuck Wallgren Owner

((673)

1000

(MA

(

Ma

Į.

ľ

600

<u>श</u>्रास्त्र | |

(M)

Į

+19 - 600

Pollution Control Services Mineral Analysis QA Check - Stabler Formula

PCS Sample#: 240	03		
Enter cation res	ults in mg/l		
mg/l Iron: mg/l Ca : mg/l Mg : mg/l Na :	0.00 90.00 13.00 6.00	me/l Iron: me/l Ca : me/l Mg : me/l Na :	0.0000 4.4910 1.0686 0.2610
mg/lK : mg/lMn :	0.00	me/l K : me/l Mn :	0.0000 0.0000
	Su	m Cations(me/l):	5.8206
Enter anion resu	lts in mg/l		
mg/l CO3 : mg/l HCO3: mg/l SO4 : mg/l C1- : mg/l F1- : mg/l NO3 :	0.00 331.00 11.00 12.00 0.36 1.75	me/l CO3 : me/l HCO3: me/l SO4 : me/l C1- : me/l F1- : me/l NO3N:	0.0000 5.4284 0.2288 0.3384 0.0189 0.0282
\$EPPOP1 97		m Anions (me/l):	6.0427

ERROR = : -1.8722

(()) |

189

(100)

POLLUTION CONTROL SERVICES 435 Isom Road, Suite 228 San Antonio, TX 78216 (512)340-0343 Report of: Chemical Analysis Date Received: 5/27/92 **PCS Sample # 23780** Date Reported: 6/11/92 To: Wm. F. Guyton & Associates 3355 Bee Cave Rd., Suite 401 Austin, Tx. 78746 Attn: Mr. Bill Klemt Sample ID: Well Water #20-1205 Date Sampled: 5/27/92 Time Sampled: Date Analyzed: 6/5/92 Parameter Concentration рH 7.3 S.U. Nitrate N 0.92 mg/1 Sp.Cond. 490 umhos/cm Sodium 7 mg/l TDS 312 mg/1 Iron 0.01 mg/l T.Hardness 270 mg/l Manganese <0.01 mg/l Calcium 74 mg/l Magnesium 21 mg/l Chloride 11 mg/lSulfate 6 mg/lT.Alkalinity 263 mg/l Fluoride 0.32 mg/l321 mg/l Bicarbonate

Approved By:

1850

翩

L Wallpen lui

Chuck Wallgren Owner

#20-1LAL

Pollution Control Services Mineral Analysis QA Check - Stabler Formula

PCS Sample#: 23780 Enter cation results in mg/l me/l Iron: 0.01 mg/l Iron: 0.0004 mg/l Ca : 74.00 me/l Ca : 3.6926 21.00 mg/l Mg : me/l Mg : 1.7262 388 A 7.00 mg/l Na : me/l Na : 0.3045 mg/l K mg/l Mn me/l K : : 0.0000 0.00 me/l Mn : : 0.0000 Sum Cations(me/1): 5.7237 l Enter anion results in mg/l 0.0000 mg/l CO3 : me/l CO3 : l mg/1 HCO3: 321.00 me/l HCO3: 5.2644 mg/l SO4 : 6.00 me/l SO4 : 0.1248 mg/l Cl- : 11.00 me/l Cl- : 0.3102 mg/l Fl- : mg/l NO3 : me/l Fl- : 0.32 0.0168 me/l NO3N: 0.92 0.0148 5.7310 Sum Anions (me/l): ERROR = : -0.0637

POLLUTION CONTROL SERVICES

435 Isom Road	, Suite 228	<u>San Antonio,</u>	<u>TX 78216</u>	(512)340-034:
Report of:Che	mical Analysis		Date Received:	5/18/92
PCS Sample #			Date Reported:	
	yton & Associates Cave Rd., Suite 4 X. 78746			
Attn: Mr. Bil	l Klemt			
	11 Water #20-3IG4			
Date Sampled: Time Sampled:	5/18/92			
Date Analyzed	•5/18/92			
Pare marled	. 5/ 10/ 32			
-	Concentration			
Parameter		Nitrate N	1.1 m	g/l
Parameter pH Sp.Cond.	Concentration 7.2 S.U. 502 umhos/cm	Sodium	7 m	g/l
Parameter pH Sp.Cond. TDS	Concentration 7.2 S.U. 502 umhos/cm 324 mg/l	Sodium Iron	7 m 0.01 m	g/l g/l
Parameter pH Sp.Cond. TDS T.Hardness	Concentration 7.2 S.U. 502 umhos/cm 324 mg/l 300 mg/l	Sodium Iron Manganese	7 m 0.01 m <0.01 m	g/l g/l g/l
Parameter pH Sp.Cond. TDS T.Hardness Calcium	Concentration 7.2 S.U. 502 umhos/cm 324 mg/l 300 mg/l 92 mg/l	Sodium Iron Manganese Magnesium	7 m 0.01 m <0.01 m	g/l g/l g/l
Parameter pH Sp.Cond. TDS T.Hardness Calcium Chloride	Concentration 7.2 S.U. 502 umhos/cm 324 mg/l 300 mg/l 92 mg/l 14 mg/l	Sodium Iron Manganese Magnesium	7 m 0.01 m <0.01 m	g/l g/l g/l
Parameter pH Sp.Cond. TDS T.Hardness Calcium Chloride Sulfate	Concentration 7.2 S.U. 502 umhos/cm 324 mg/l 300 mg/l 92 mg/l 14 mg/l 12 mg/l	Sodium Iron Manganese Magnesium	7 m 0.01 m <0.01 m	g/l g/l g/l
Parameter pH Sp.Cond. TDS T.Hardness Calcium Chloride	Concentration 7.2 S.U. 502 umhos/cm 324 mg/l 300 mg/l 92 mg/l 14 mg/l 12 mg/l	Sodium Iron Manganese Magnesium	7 m 0.01 m <0.01 m	g/l g/l g/l

Approved By:

Į

(m) Į

Į

l

10.6m

(MR)

ť.

unch Wallpin

Chuck Wallgren Owner

.

Follution Control Services # 20-35 Mineral Analysis QA Check - Stabler Formula

PCS Sample#: 23621 Enter cation results in mg/l mg/l Iron: 0.01 0.0004 me/l Iron: mg/l Ca : 92.00 me/l Ca : 4.5908 mg/l Mg : mg/l Na : mg/l K : me/l Mg : 17.00 1.3974 me/l Na : 7.00 0.3045 me/l K 0.0000 : mg/l Mn : 0.01 me/l Mn : 0.0004 Sum Cations(me/l): 6.2935 Enter anion results in mg/l mg/1 CO3: me/1 CO3 : 0.0000 mg/l HCO3: mg/l SO4 : mg/l Cl- : me/l HCO3: me/l SO4 : 344.00 5.6416 12.00 0.2496 14.00 me/l Cl- : 0.3948 mg/1 C1- : mg/1 F1- : 0.28 me/l Fl- : 0.0147 mg/1 NO3: 1.10 me/l NO3N: 0.0177 Sum Anions (me/l): 6.3184 ERROR = : -0.1974

(ARA)

POLLUTION CONTROL SBRVICES 435 Isom Road, Suite 228 San Antonio, TX 78216 (512)340-0343 Date Received: 6/3/92 Report of: Chemical Analysis Date Reported: **PCS Sample # 23876** 6/12/92 To: Wm. F. Guyton & Associates 3355 Bee Cave Rd., Suite 401 Austin, Tx. 78746 Attn: Mr. Bill Klemt Sample ID: Well Water #20-4ED91 Date Sampled: 6/3/92 Time Sampled: Date Analyzed:6/5/92 Concentration Parameter рH Nitrate N 7.5 S.U. 0.58 mg/l Sodium Sp.Cond. 500 umhos/cm 8 mg/l 0.09 mg/l TDS 300 mg/1 Iron 266 mg/l <0.01 mg/l T.Hardness Manganese Calcium 89 mg/l Magnesium 11 mg/lChloride 11 mg/l Sulfate 21 mg/l T.Alkalinity 253 mg/l Fluoride 0.22 mg/1Bicarbonate 309 mg/l

Approved By:

luch Willyum

Chuck Wallgren Owner

20-4ED9.1

Pollution Control Services Mineral Analysis QA Check - Stabler Formula

PCS Sample#: 23876 Enter cation results in mg/l mg/l Iron: 0.09 me/l Iron: 0.0032 L. mg/l Ca mg/l Ca mg/l Mg mg/l Na mg/l K 89.00 me/l Ca 4.4411 : : 11.00 me/l Mg 0.9042 : : me/l Na : 8.00 : 0.3480 me/l K 0.0000 : : mg/l Mn 0.00 me/l Mn 0.0000 : : Sum Cations(me/1): 5.6965 Į Enter anion results in mg/l mg/1 CO3 : me/1 CO3 : 0.0000 mg/l HCO3: 309.00 me/l HCO3: 5.0676 mg/l SO4 : 21.00 me/l SO4 : 0.4368 隬 me/l Cl- : me/l Fl- : mg/l Cl- : 11.00 0.3102 0.0116 mg/l Fl- : 0.22 mg/1 NO3 : 0.58 me/l NO3N: 0.0093 5.8355 Sum Anions (me/l): ERROR = : -1.2053

儞

POLLUTION CONTROL SERVICES

435 Isom Road,	Suite 228	<u>San Antonio,</u>	<u>TX 78216</u>	<u>(512)340-0.</u>
Report of:Chem PCS Sample # 2			Date Received: Date Reported:	-//
	rton & Associate Cave Rd., Suite K. 78746			
Attn: Mr. Bill	Klemt			
Sample ID: Wel Date Sampled: Time Sampled: Date Analyzed:		18		
Parameter	Concentration			
pH Sp.Cond. TDS T.Hardness Calcium Chloride Sulfate	7.4 S.U 490 umhos/c 316 mg/ 280 mg/ 56 mg/ 12 mg/ 44 mg/ 245 mg/	m Sodium 1 Iron 1 Manganese 1 Magnesium 1 1	11 m 0.06 m 0.01 m	g/l g/l g/l

.

Approved By:

188

) (1)

M

(MR)

ł

lunch Wallpen

Chuck Wallgren Owner

20 - 7A+

Pollution Control Services Mineral Analysis QA Check - Stabler Formula

PCS Sample#: 23573 Enter cation results in mg/l mg/l Iron: 0.06 me/l Iron: 0.0021 mg/l Ca : 56.00 me/l Ca : 2.7944 mg/l Mg : 35.00 me/l Mg : 2.8770 mg/l Na : mg/l K : mg/l Mn : 11.00 me/l Na : 0.4785 me/l K : 0.0000 0.01 me/l Mn : 0.0004 Sum Cations(me/l): 6.1524 i. Enter anion results in mg/l mg/l CO3 : me/1 CO3 : 0.0000 299.00 me/l HCO3: mg/1 HCO3: 4.9036 mg/l SO4 : me/l SO4 : 31.00 0.6448 嚻 mg/l Cl-:12.00 me/l Cl-:0.3384 mg/l Fl- : mg/l NO3 : 0.70 me/l Fl- : 0.0368 me/l NO3N: 0.01 0.0002 Sum Anions (me/l): 5.9238

ERROR = : 1.8930

POLLUTION CONTROL SERVICES 435 Isom Road, Suite 228 San Antonio, TX 78216 (512)340-0343 Report of: Chemical Analysis Date Received: 5/13/92 **PCS Sample # 23550** Date Reported: 5/18/92 To: Wm. F. Guyton & Associates 3355 Bee Cave Rd., Suite 401 Austin, TX. 78746 Attn: Mr. Bill Klemt Sample ID: Well Water #20-7HD6 Date Sampled: 5/13/92 Time Sampled: Date Analyzed: 5/15/92 Parameter Concentration 7.5 S.U. Nitrate N 0.46 mg/lрĦ Sp.Cond. 680 umhos/cm Sodium 16 mg/l TDS 492 mg/l Iron 6.4 mg/l T.Hardness 352 mg/l Manganese 0.34 mg/1Calcium 101 mg/l Magnesium 24 mg/l Chloride 28.5 mg/l Sulfate 92 mg/l T.Alkalinity 304 mg/l Fluoride 0.42 mg/l

Approved By: Wally Uue

370 mg/l

Chuck Wallgren Owner

Bicarbonate

쪥

rian

儞

Į

Pollution Control Services Mineral Analysis QA Check - Stabler Formula

	PCS Sample#: 235	50		
P	Enter cation res	ults in mg/l		
ľ	mg/l Iron:	6.40	me/l Iron:	0.2291
	mg/l Ca :	101.00	me/l Ca :	5.0399
153	mg/l Mg :	24.00	me/l Mg :	1.9728
	mg/l Na :	16.00	me/l Na :	0.6960
€	mg/lK :		me/l K :	0.0000
	mg/l Mn :	0.34	me/l Mn :	0.0124
		1	Sum Cations(me/l):	7.9502
m	Enter anion resul	lts in mg/l		
i i	mg/l CO3 :		me/l CO3 :	0.0000
	mg/l HCO3:	322.00	me/l HCO3:	5.2808
670	mg/l SO4 :	92.00	me/l SO4 :	1.9136
	mg/l Cl- :	28.50	me/l Cl- :	0.8037
t –	mg/l Fl- :	0.42	me/l Fl- :	0.0221
	mg/l NO3 :	0.46	me/l NO3N:	0.0074
ſ		8	Sum Anions (me/l):	8.0276
-	ERROR = : -0.48	44		

M

P

(MA)

POLLUTION CONTROL SERVICES

435 Isom Road	, Suite 228	<u>San Antonio,</u>	<u>TX 78216</u>	(512)340-0343
Report of:Cher PCS Sample # 2	nical Analysis 23937		Date Receive Date Reporte	
	yton & Associates Cave Rd., Suite 4 x. 78746			
Attn: Mr. Bil	l Klemt.			
Date Sampled: Time Sampled:				
Date Analyzed	:6/8/92			
Parameter	Concentration			
pH	7.4 S.U.			mg/l
Sp.Cond.	480 umhos/cm			mg/l
TDS	272 mg/1			mg/l
T.Hardness		Manganese		
Calcium	91 mg/1	Magnesium	11	mg/l
Chloride	9 mg/1			
Sulfate	10 mg/l			
T.Alkalinity				
Fluoride	0.43 mg/1			
Bicarbonate	313 mg/l			

Approved By:

() | |

國

(m)

(PMA)

[] []

M

P

儞

MAG

M

圖

L

æ

M

ł

huch Wallyun

Chuck Wallgren Owner

Pollution Control Services

20-8004

	Mineral Analys	sis QA Check - Stabler	Formula #2
PCS Sample#: 23	937		
Enter cation rea	sults in mg/l		
mg/l Iron:	0.01	me/l Iron:	0.0004
mg/l Ca :	91.00	me/l Ca :	4.5409
mg/l Mg :	11.00	me/1 Mg :	0.9042
mg/l Na :	6.00	me/l Mg : me/l Na : me/l K : me/l Mn :	0.2610
mg/l Na : mg/l K : mg/l Mn :		me/l K :	0.0000
mg/1 Mn :	0.00	me/1 Mn :	0.0000
	Si	um Cations(me/l):	5.7065
Enter anion res	ults in mg/l		
mg/l CO3 :		me/l CO3 :	0.0000
mg/l HCO3:	313.00	me/l HCO3:	5.1332
mg/l SO4 :	10.00	me/1 SO4 :	0.2080
mg/l Cl- :	9.00	me/l Cl- :	0.2538
mg/l Fl- :	0.43	me/l Fl- :	0.0226
mg/l NO3 :	0.48	me/l NO3N:	0.0077
	Si	m Anions (me/l):	5.6253
*ERROR = : 0.71	66		

•

[]

P

((

P

(M)

POLLUTION CONTROL SBRVICES

435 Isom Road,	, Suite 228	<u>San</u>	Antonio,	<u> </u>	78216	<u>(512)340-03</u>
Report of:Cher PCS Sample # 2	nical Analysis 24033				Received: Reported:	6/12/9 6/16/9
	yton & Associat Cave Rd., Suite k. 78746					
Attn: Mr. Bill	l Klemt					
Sample ID: We Date Sampled: Time Sampled: Date Analyzed:		D4				
Parameter	Concentration	l				
pH Sp.Cond. TDS T.Hardness Calcium Chloride Sulfate T.Alkalinity	7.3 S. 700 umhos/ 312 mg 344 mg 75 mg 25 mg 66 mg 276 mg	cm s //1 1 //1 1 //1 1 //1 1 //1	Nitrate N Sodium Iron Manganese Magnesium		0.35 mg, 16 mg, 0.01 mg, 0.01 mg, 38 mg,	/1 /1 /1
Fluoride Bicarbonate	1.62 mg 337 mg	/1				

Approved By:

ł

ł

1

(iiii) ľ

Ĭ.

ł

B

Huch Wallph

Chuck Wallgren Owner

Pollution Control Services Mineral Analysis QA Check - Stabler Formula #21-2^{HU+}

	PCS Sample#: 240	33		
P	Enter cation res	ults in mg/l		
ľ	mg/l Iron:	0.01	me/l Iron:	0.0004
•	mg/l Ca :	75.00	me/l Ca :	3.7425
in a	mg/l Mg :	38.00	me/l Mg :	3.1236
	mg/l Na :	16.00	me/l Na :	0.6960
{i	mg/1 K :	20000	me/1 K:	0.0000
	mg/1 Mn :	0.01	me/l Mn :	0.0004
<i>(</i> 1)	1119/1 MII •	0.01		0.0004
		Su	m Cations(me/l):	7.5629
M	Enter anion resu	lts in mg/l		
	mg/l CO3 :		me/1 CO3 :	0.0000
l.	mg/l HCO3:	337.00	me/l HCO3:	5.5268
_	mg/1 SO4 :	66.00	me/1 SO4 :	1.3728
M	mg/l Cl- :	25.00	me/1 Cl- :	0.7050
Ţ	mg/1 F1- :	1.62	me/1 F1- :	0.0852
·	mg/1 NO3:	0.35	me/1 PIC : me/1 NO3N:	
1	ш д/т NO5 :	0.35	me/1 NOSN:	0.0056
		Su	m Anions (me/l):	7.6954
	<pre>%ERROR = : -0.86</pre>	84		

1

(i

[(

M Ċ

l

--

POLLUTION CONTROL SERVICES

435 Isom Road	<u>, Suite 228 S</u>	<u>an Antonio,</u>	<u>TX 7821</u>	6	<u>(512)340-0343</u>
	mical Analysis		Date Rece		6/17/92
PCS Sample # 2	24077		Date Repo	orted:	6/22/92
	yton & Associates Cave Rd., Suite 40 x. 78746	1			
Attn: Mr. Bill	l Klemt				
	11 WAter #21-2HI9				
Date Sampled: Time Sampled:	5/1//92				
Date Analyzed	:6/18/92				
Parameter	Concentration				
pH	7.2 S.U.	Nitrate N	(0.17 mg/l	
Sp.Cond.	2580 umhos/cm	Sodium		10 mg/l	
TDS	2436 mg/l			0.06 mg/l	
T.Hardness	1760 mg/l			0.02 mg/1	•
Calcium	505 mg/l	Magnesium		160 mg/l	
Chloride	19 mg/l				
Sulfate	1650 mg/l				
T.Alkalinity					
Fluoride	3.6 mg/l				
Bicarbonate	295 mg/l				

٠

•

Approved By:

P İ

M

(MA) ŀ

P ŀ

Ĩ.

M ľ

lunch Wallper

.

Chuck Wallgren Owner

オンコーコルエタ

Pollution Control Services Mineral Analysis QA Check - Stabler Formula

	PCS Sample#: 2407	77		
@	Enter cation resu	ults in mg/l		
	mg/l Iron: mg/l Ca : mg/l Mg : mg/l Na : mg/l K : mg/l Mn :	0.06 505.00 160.00 10.00 0.02	me/l Iron: me/l Ca : me/l Mg : me/l Na : me/l K : me/l Mn :	0.0021 25.1995 13.1520 0.4350 0.0000 0.0007
			Sum Cations(me/l):	38.7893
Ø	Enter anion resul	lts in mg/l		
	mg/l CO3 : mg/l HCO3: mg/l SO4 : mg/l C1- : mg/l F1- : mg/l NO3 :	295.00 1650.00 19.00 3.60 0.17	<pre>me/l CO3 : me/l HCO3: me/l SO4 : me/l Cl- : me/l Fl- : me/l NO3N:</pre>	0.0000 4.8380 34.3200 0.5358 0.1894 0.0027
			Sum Anions (me/l):	39.8859
nia.	ERROR = : -1.393	38		

(1973)

()

j.

P

POLLUTION CONTROL SERVICES 435 Isom Road, Suite 228 San Antonio, TX 78216 (512)340-0343 Report of: Chemical Analysis Date Received: 5/14/92 **PCS Sample # 23575** Date Reported: 5/20/92 To: Wm. F. Guyton & Associates 3355 Bee Cave Rd., Suite 401 Austin,, Tx. 78746 Attn: Mr. Bill Klemt Sample ID: Well Water #21-5DE8 Date Sampled: 5/14/92 Time Sampled: Date Analyzed: 5/17/92 Concentration Parameter 7.3 S.U. Nitrate N <0.01 mg/l pН Sp.Cond. 1180 umhos/cm Sodium 54 mg/l TDS 824 mg/l Iron 0.23 mg/l 590 mg/l T.Hardness Manganese 0.01 mg/l Calcium 112 mg/l Magnesium 110 mg/l Chloride 77 mg/l Sulfate 274 mg/1 T.Alkalinity 304 mg/l Fluoride 3.85 mg/l

Approved By:

Bicarbonate

Į.

- Will pu

371 mg/l

Chuck Wallgren Owner

Pollution Control Services Mineral Analysis QA Check - Stabler Formula

ι.		Mineral Analysi	ls QA Check - Stabler	Formula
	PCS Sample#: 23	575		# 21-501=8
P	Enter cation rea	sults in mg/l		
1	mg/l Iron:	0.23	me/l Iron:	0.0082
	mg/l Ca :	112.00	me/l Ca :	5.5888
M	mg/l Mg :	76.00	me/l Mg :	6.2472
	mg/l Na :	54.00	me/l Na :	2.3490
Ç.,	mg/l K:		me/1 K :	0.0000
	mg/l Mn :	0.01	me/l Mn :	0.0004
		Sur	n Cations(me/l):	14.1936
(i)	Enter anion res	ults in mg/l		
	mg/l CO3 :		me/l CO3 :	0.0000
	mg/l HCO3:	371.00	me/l HCO3:	6.0844
20	mg/1 SO4 :	274.00	me/l SO4 :	5.6992
	mg/l Cl- :	77.00	me/l Cl- :	2.1714
Ϊ.	mg/l Fl- :	3.85	me/l Fl- :	0.2025
	mg/l NO3 :	0.01	me/l NO3N:	0.0002
ſ		Sur	n Anions (me/l):	14.1577
	\$EDDOD - 1 0 12	66		

%ERROR = : 0.1266

(978**)**

l.

儞 ľ

(M) ŀ

ſ

POLLUTION CONTROL SBRVICES 435 Isom Road, Suite 228 San Antonio, TX 78216 (512)340-0343 Report of: Chemical Analysis Date Received: 6/16/92 **PCS Sample # 24056** Date Reported: 6/22/92 To: Wm. F. Guyton & Associates 3355 Bee Cave Rd., Suite 401 Austin, Tx. 78746 Attn: Mr. Bill Klemt Sample ID: Well Water #27-1AC4 Date Sampled:6/16/92 Time Sampled: Date Analyzed:6/18/92 Parameter Concentration 7.1 S.U. Nitrate N 0.18 mg/l рH 1200 umhos/cm Sodium Sp.Cond. 10 mg/lTDS 964 mg/l Iron <0.01 mg/l T.Hardness 666 mg/l Manganese <0.01 mg/l Calcium 212 mg/1 Magnesium 34 mg/l Chloride 15 mg/l Sulfate 464 mg/l T.Alkalinity 188 mg/l Fluoride 1.23 mg/1

Approved By:

Bicarbonate

(M)

Æ

-Wallpu

229 mg/l

Chuck Wallgren Owner

#27-14-4

Pollution Control Services Mineral Analysis QA Check - Stabler Formula

PCS Sample#: 24056 Enter cation results in mg/l mg/l Iron: 0.01 me/l Iron: 0.0004 mg/l Ca : 212.00 me/l Ca : 10.5788 mg/l Mg : me/l Mg : 34.00 2.7948 mg/l Na : mg/l K : me/l Na : 10.00 0.4350 me/l K 0.0000 : mg/l Mn : 0.01 me/l Mn : 0.0004 (ind) Sum Cations(me/l): 13.8094 Į. Enter anion results in mg/l mg/l CO3: me/l CO3 : 0.0000 229.00 3.7556 mg/1 HCO3: me/l HCO3: mg/l SO4 : 464.00 me/1 SO4 : 9.6512 M 15.00 mg/l Cl- : me/l Cl-:0.4230 È. mg/l Fl- : mg/l NO3 : 1.23 me/1 F1- : 0.0647 0.18 me/l NO3N: 0.0029 P Sum Anions (me/l): 13.8974 ERROR = : -0.3176

儞

ų

. 1.,.

ŀ.

435 Isom Road	, Suite 228 S	an Antonio,	<u>TX 78216</u>	(512)340-0343
Report of:Che PCS Sample #	mical Analysis 23551		Date Received Date Reported	
	yton & Associates Cave Rd., Suite 40 X. 78746	1		
Attn: Mr. Bil	l Klemt			
Sample ID: We Date Sampled: Time Sampled: Date Analyzed				
Parameter	Concentration			
pH Sp.Cond. TDS T.Hardness Calcium Chloride Sulfate T.Alkalinity Fluoride Bicarbonate	7.8 S.U. 510 umhos/cm 388 mg/l 304 mg/l 88 mg/l 13 mg/l 52 mg/l 275 mg/l 0.50 mg/l 335 mg/l	Iron	8 0.02 <0.01	

Approved By:

6

Ĺ

ø

() () ()

ſ

luch Wallym

.

Chuck Wallgren Owner

Pollution Control Services Mineral Analysis QA Check - Stabler Formula

Enter cation res	uica in mg/l		
mg/l Iron:	0.02	me/l Iron:	0.0007
mg/l Ca :	88.00	me/l Ca :	4.3912
mg/l Mg :	20.00	me/l Mg :	1.6440
mg/l Mg : mg/l Na : mg/l K :	8.00	me/l Na :	0.3480
		me/lK :	0.0000
mg/l Mn :	0.01	me/l Mn :	0.0004
	Su	m Cations(me/l):	6.3843
Enter anion resu	lts in mg/l		
mg/l CO3 :		me/l CO3 :	0.0000
mg/l HCO3:	292.00	me/l HCO3:	4.7888
mg/l SO4 :	52.00	me/l SO4 :	1.0816
mg/l Cl- :	13.00	me/l Cl- :	0.3666
mg/l Fl- :	0.50	me/l Fl- :	0.0263
mg/l NO3 :	1.10	me/l NO3N:	0.0177

ERROR = : 0.8156

.

.

į, 1 ł

> 100 Į

(MPA) 1

m |-

M

POLLUTION CONTROL SERVICES 435 Isom Road, Suite 228 San Antonio, TX 78216 (512)340-0343 Report of: Chemical Analysis Date Received: 5/19/92 PCS Sample # 23647 Date Reported: 5/24/92 To: Wm. F. Guyton & Associates 3355 Bee Cave Rd., Suite 401 San Antonio, Tx. 78746 Attn: Mr. Bill Klemt Sample ID: Well Water #27-5BE7 Date Sampled: 5/19/92 Time Sampled: Date Analyzed: 5/19/92 Parameter Concentration 7.5 S.U. pH Nitrate N 0.88 mg/lSp.Cond. Sodium 17 mg/l 720 umhos/cm 312 mg/l TDS Iron 0.01 mg/lT.Hardness 384 mg/l Manganese 0.01 mg/l Calcium 67 mg/l Magnesium 53 mg/l Chloride 35 mg/l Sulfate 108 mg/1T.Alkalinity 237 mg/l Fluoride 2.46 mg/l Bicarbonate 289 mg/l

Apprøved By:

1988

쪪

Ľ

P

t

()

-Wallyre tui

Chuck Wallgren Owner

Pollution Control Services Mineral Analysis QA Check - Stabler Formula $\pm 67^{-58}$

	PCS Sample#: 236	47		
(m	Enter cation res	ults in mg/l		
	mg/l Iron: mg/l Ca : mg/l Mg : mg/l Na : mg/l K : mg/l Mn :	0.01 67.00 53.00 17.00 0.01	me/l Iron: me/l Ca : me/l Mg : me/l Na : me/l K : me/l Mn :	0.0004 3.3433 4.3566 0.7395 0.0000 0.0004
	Enter anion resu		Sum Cations(me/l):	8.4402
	mg/l CO3 : mg/l HCO3: mg/l SO4 : mg/l Cl- : mg/l Fl- : mg/l NO3 :	289.00 108.00 35.00 2.46 0.88	me/l CO3 : me/l HCO3: me/l SO4 : me/l C1- : me/l F1- : me/l NO3N:	0.0000 4.7396 2.2464 0.9870 0.1294 0.0142
			Sum Anions (me/l):	8.1166

%ERROR = : 1.9545

(MR) ł

Ľ

P Ł

(M)) l

쪥

(The second

1.

.

435 Isom Road	<u>, Suite 228 </u> 5	an Antonio,	<u>TX 78216</u>	(512)340-0343
Report of:Che PCS Sample # 2	mical Analyвія 23958		Date Received: Date Reported:	6/8/92 6/15/92
		01		
	11 Water #28-2AB6			
Time Sampled: Date Analyzed:	:6/8/92			
Parameter	Concentration	Parameter	Concentra	tion
pH	7.0 S.U.	Nitrate N	0.17 mg	/1
Sp.Cond.	2600 umhos/cm	Sodium	14 mg	
TDS	2600 mg/l	Iron	1.36 mg	
T.Hardness	1960 mg/1			
Calcium	561 mg/1	Magnesium	137 mg	/1
Chloride	14 mg/1			
Sulfate	1707 mg/l			
T.Alkalinity				
Fluoride	3.80 mg/l			
Bicarbonate	286 mg/l			

Approved By:

ł

t

儞쮓

(|

P

, Mile

Įm,

· _-

Í,

() |

6

lund Wallpin

Chuck Wallgren Owner

Pollution Control Services Mineral Analysis QA Check - Stabler Formula

#28-3AB6 PCS Sample#: 23958 Enter cation results in mg/l mg/l Iron: me/l Iron: 1.36 0.0487 mg/l Ca mg/l Mg 561.00 me/l Ca 27.9939 : : 11.2614 137.00 me/l Mg : : mg/l Na me/l Na : 14.00 : 0.6090 mg/l K me/l K 0.0000 : : mg/l Mn 0.03 me/l Mn 0.0011 : : Sum Cations(me/l): 39.9141 Enter anion results in mg/l mg/1 CO3 : 0.00 me/l CO3 : 0.0000 286.00 me/l HCO3: mg/l HCO3: 4.6904 1707.00 me/1 SO4 : 35.5056 mg/l SO4 : mg/l Cl- : 0.3948 14.00 me/l Cl-:mg/l Fl- : mg/l NO3 : me/l Fl- : 3.80 0.1999 me/l NO3N: 0.17 0.0027 40.7934 Sum Anions (me/l):

ERROR = : -1.0895

Ļ ٤. L.

APPENDIX 2

 $\left(\begin{array}{c} \\ \end{array} \right)$

Ć

Laboratory Reports of Bacteriological Analyses

435 Isom Road, Suite 228 San Antonio, TX 78216 (512)340-0343

Report of:Bacteriological Analysis PCS Sample # 24035 Date Received: 6/15/92 Date Reported: 6/17/92

To: Wm. F. Guyton & Associates 3355 Bee Cave Rd., Suite 401 Austin, Tx. 78746

Attn: Mr. Bill Klemt

.

Sample ID: Well Water #18-9IE1 Date Sampled:6/15/92 Time Sampled: Date Analyzed:6/15/92

Parameter Concentration

F.Coliform	0 COL/100	ml
T.Coliform	0 COL/100	ml
F.Strep.	2 COL/100	ml

-Wallpu we

Chuck Wallgren Owner

435 Isom Road, Suite 228 San Antonio, TX 78216 (512)340-0343

Report of:Bacteriological Analysis PCS Sample # 24001 Date Received: 6/10/92 Date Reported: 6/12/92

To: Wm. F. Guyton & Associates 3355 Bee Cave Rd., Suite 401 Austin, TX 78746

Attn: Mr. Bill Klemt

Sample ID: Well Water #19-3FE1 Date Sampled:6/10/92 Time Sampled: Date Analyzed:6/10/92

Parameter Concentration

F.Coliform	0 Col/100 m
T.Coliform	0 Col/100 m
F.Strep.	0 Col/100 ml

Approved By:

huch Wallgue

Chuck Wallgren Owner

Ŵ

435 Isom Road, Suite 228 San Antonio, TX 78216 (512)340-0343

Report of:Bacteriological Analysis PCS Sample # 23574 Date Received: 5/14/92 Date Reported: 5/16/92

To: Wm. F. Guyton & Associates 3355 Bee Cave Rd., Suite 401 Austin, Tx. 78746

Attn: Mr. Bill Klemt

Sample ID: Well Water #19-57E8 Date Sampled:5/14/92 Time Sampled: Date Analyzed:5/14/92

Parameter	Concentration	
F.Coliform	0 COL/100 ml	

r.colliorm	U	COP/IOO	шт
T.Coliform	0	COL/100	ml
F.Strep.	2	COL/100	ml

Approved By:

- Wallym luc

Chuck Wallgren Owner

() ()

435 Isom Road, Suite 228 San Antonio, TX 78216 (512)340-0343 Report of: Bacteriological Analysis Date Received: 6/2/92 **PCS Sample # 23851** Date Reported: 6/4/92 To: Wm. F. Guyton & Associates 3355 Bee Cave Rd., Suite 401 Austin, TX 78746 Attn: Mr. Bill Klemt Sample ID: Well Water #19-6CI5 Date Sampled: 6/2/92 Time Sampled: Date Analyzed: 6/2/92 Parameter Concentration F.Coliform 0 Col/100 ml T.Coliform 0 Col/100 ml F.Strep. 0 Col/100 ml

Approved By:

•

Wallpin in

Chuck Wallgren Owner

WATER BACTERIOLOGY Form No. G-19 (Rev. 1/91)	Texas Department of Health Bureau of Laboratories
Date and Time Rec'd. 5/12/92 Truni 12/33	Date
Sample No. Do not mark above this fine - Please print with	Reported <u>5 14 - 4</u>
Water System I.D. No.	
FANKIET DIN WELLING	BEXAIR
Submitter I.D. No. 1 1417 (2)17	
SEND WILLLAW STEND	
RESULTS 3355 BOC COVER RALL	LI Smith High
TO: AUSTIMILIE T	
Date and	
Time of DE V2 92 03:30 Collection MONTH DAY YEAR TIME	
TYPE-OF SYSTEM SAMPLE IS (Public Systems Q Understand Systems Q Distribution	
Individual Bottled Construction	epeat
School Special	Chlorine Residual
Ownership or other information:	
LABORATORY REPORT (Do no Water of satisfactory becteriological quality must b	
Colliern Organisme Not Found	
Found ~	
Total T	c ~ ch / loo mel
E Focal F	5.42
	at samples required
🗍 Unsuitable — See below	
·	
UNSUITABLE FOR ANALYSIS - PLEASE RESUBI	• 1
Sample too old. Sample not received within 30 hours of collection	Guantity insufficient for analysis (100 ml. required)
Date discrepancy or form incomplete (See encircled item)	Heavy (silt/bacterial growth) present,
Leaked in transit	
Cother.	

L

ſ,

Į.

P

ľ

ľ

ŀ

435 Isom Road, Suite 228 San Antonio, TX 78216 (512)340-0343

Report of:Bacteriological Analysis PCS Sample # 23780 Date Received: 5/27/92 Date Reported: 5/29/92

To: Wm. F. Guyton & Associates 3355 Bee Cave Rd., Suite 401 Austin, Tx. 78746

Attn: Mr. Bill Klemt

.

L

1188

Sample ID: Well Water #20-125 Date Sampled:5/27/92 Time Sampled: Date Analyzed:5/27/92

Parameter	Concentration			
F.Coliform	0 COL/100 ml			
T.Coliform F.Strep.	<2 COL/100 ml <2 COL/100 ml			

1 Willpin

Chuck Wallgren Owner

435 Isom Road, Suite 228 San Antonio, TX 78216 (512)340-0343

Report of:Bacteriological Analysis **PCS Sample # 23621**

Date Received: 5/14/92 Date Reported:5/16/92

.

To: Wm. F. Guyton & Associates 3355 Bee Cave Rd., Suite 401 Austin, Tx. 78746

Attn: Mr. Bill Klemt

Sample ID: Well Water #20-3IG4 Date Sampled: 5/14/92 Time Sampled: Date Analyzed: 5/14/92

Parameter	Concentration
F.Coliform	0 COL/100 ml
T.Coliform	0 COL/100 ml
F.Strep.	0 COL/100 ml

Approved By:

- Wall prem hue

Chuck Wallgren Owner

Suite 228	San Antonio,	TX 7	78216	(512)340-034
riological 876	Analysis			eived:6/3/92 orted:6/5/92
Conce	entration			
140 CC)L/100 ml			
	criological 876 on & Associ ve Rd., Sui 78746 Klemt 20 Water #28- 3/92 /3/92 /3/92 Conce 89 C0 140 C0	on & Associates 876 on & Associates ve Rd., Suite 401 78746 Klemt 20-4ED9.1 Water #28-2HF8 3/92	criological Analysis 876 I on & Associates ve Rd., Suite 401 78746 Klemt 20-4ED9.1 Water #28-2HFS 3/92 /3/92 Concentration 89 COL/100 ml 140 COL/100 ml	876 Date Repo on & Associates ve Rd., Suite 401 78746 Klemt Jo-4ED4./ Water #38-2HF9 3/92 /3/92 Concentration 89 COL/100 ml 140 COL/100 ml

Approved By:

颲

M

(in)

P

A

쪫

Und Wallym

Chuck Wallgren Owner

435 Isom Road, Suite 228 San Antonio, TX 78216 (512)340-0343 Report of: Bacteriological Analysis Date Received: 5/14/92 Date Reported: 5/16/92 **PCS Sample # 23573** To: Wm. F. Guyton & Associates 3355 Bee Cave Rd., Suite 401 Austin, Tx. 78746 Attn: Mr. Bill Klemt Sample ID: Well Water #20-7AA8 Date Sampled: 5/14/92 Time Sampled: Date Analyzed: 5/14/92 Concentration Parameter F.Coliform 0 COL/100 ml T.Coliform 0 COL/100 ml 25 COL/100 ml F.Strep.

Approved By:

64

luch Wallpen

Chuck Wallgren Owner

the second second second second second second second second second second second second second second second s	
WATER BACTERIOLOGY Form No. G-19 (Rev. 1/91)	Texas Department of Health Bureau of Laboratories
Date and Time Rec'd.	Date
Sample No. <u>4 (U.i. N'i</u>	1 Reported 5-15-97
Do not mark above this line — Please	print with ballpoint pen or typewriter.
Water System LD. No.	RUIS IS 19/1 PHARIK
POINT OF COLLECTION	ELL BEY AR LILL
WILL WR RESULTION I.D. No. LIK	<u>0141012</u>
SEND BILLY STELL MILLE	
RESULTS 17561 BUE CANE F	ALLSHITE HOLL
Date and Time of Collection MONTH DAY YEAR TIME	U Q COLLECTED BY
	IPLE IS WATER SOURCE
Public Dairy Distribution	Prev River Lake
Individual Bottled Construction	Repeat Well Depth
School VIRK Special	Chlorine Residual
Ownership or other information:	
LABORATORY REPORT	
Water of satisfactory bacteriological quality	
Coliform Organisma Di Not Found	TC: 330 /
Found	FC = KY has
	/////
	Cal FS : 11CO
Unsuitable — See	
Start Star	
140 m	
UNSUITABLE FOR ANALYSIS - PLEASE I	RESIRMIT
	-
Sample too old. Sample not received within 30 hours of collection	Quantity insufficient for analysis (100 ml. required)
Date discrepancy or form incomplete (See encircled item)	Heavy (sit/bacterial growth) present, possibly compromising test results
Leaked in transit	
Other RET / FAIL	\mathbf{O}

.

Mir

P

ľ.

M Ľ

ſ

435 Isom Road, Suite 228 San Antonio, TX 78216 (512)340-0343Date Received: 6/4/92 Report of: Bacteriological Analysis **PCS Sample # 23937** Date Reported: 6/6/92 To: Wm. F. Guyton & Associates 3355 Bee Cave Rd., Suite 401 Austin, Tx. 78746 Attn: Mr. Bill Klemt Sample ID: Well Water #20-8DD4 Date Sampled:6/4/92 Time Sampled: Date Analyzed: 6/4/92 Concentration Parameter F.Coliform 0 COL/100 ml T.Coliform 0 COL/100 ml F.Strep. 0 COL/100 ml

Approved By: - Whelepen luc

Chuck Wallgren Owner

435 Isom Road, Suite 228 San Antonio, TX 78216 (512)340-0343 Report of:Bacteriological Analysis Date Received: 6/12/92 **PCS Sample # 24033** Date Reported: 6/14/92 To: Wm. F. Guyton & Associates 3355 Bee Cave Rd., Suite 401 Austin, Tx. 78746 Attn: Mr. Bill Klemt Sample ID: Well Water #21-2HD4 Date Sampled:6/12/92 Time Sampled: Date Analyzed: 6/12/92 Parameter Concentration F.Coliform 0 COL/100 ml T.Coliform 40 COL/100 ml F.Strep. 40 COL/100 ml

- Wallnu lun

Chuck Wallgren Owner

435 Isom Road, Suite 228 San Antonio, TX 78216 (512)340-0343

Report of:Bacteriological Analysis PCS Sample # 24077 Date Received: 6/17/92 Date Reported: 6/19/92

To: Wm. F. Guyton & Associates 3355 Bee Cave Rd., Suite 401 Austin, Tx. 78746

Attn: Mr. Bill Klemt

Sample ID: Well Water #21-2HI9 Date Sampled:6/17/92 Time Sampled: Date Analyzed:6/17/92

Parameter Concentration

1.0011101m		
T.Coliform	0 COL/100 n	nl
F.Strep.	0 COL/100 m	1

- Wallym luce

Chuck Wallgren Owner

435 Isom Road, Suite 228 San Antonio, TX 78216 (512)340-0343

Report of:Bacteriological Analysis PCS Sample # 23575 Date Received: 5/14/92 Date Reported: 5/16/92

To: Wm. F. Guyton & Associates 3355 Bee Cave Rd., Suite 401 Austin, Tx. 78746

Attn: Mr. Bill Klemt

Sample ID: Well Water #21-5DE8 Date Sampled:5/14/92 Time Sampled: Date Analyzed:5/15/92

Parameter	Concentration			
F.Coliform	0 COL/100 ml			
T.Coliform	0 COL/100 ml			
F.Strep.	2800 COL/100 ml			

-Wallpu

Chuck Wallgren Owner

435 Isom Road, Suite 228 San Antonio, TX 78216 (512)340-0343

Report of:Bacteriological Analysis PCS Sample # 24056 Date Received: 6/16/92 Date Reported: 6/18/92

To: Wm. F. Guyton & Associates 3355 Bee Cave Rd., Suite 401 Austin, Tx. 78746

Attn: Mr. Bill Klemt

l

(MR)

l

1

Sample ID: Well Water #27-1AC4 Date Sampled:6/16/92 Time Sampled: Date Analyzed:6/16/92

Parameter	Concentration
F.Coliform	0 COL/100 ml
T.Coliform	1 COL/100 ml
F.Strep.	0 COL/100 ml

- Wallgun

Chuck Wallgren Owner

and the second second second second second second second second second second second second second second second	The second second second second second second second second second second second second second second second s
WATER BACTERIOLOGY Form No. G-19 (Rev. 1/91)	Texas Department of Health Bureau of Laboratories
Date and Time Rec'd. 4 4 U 4 March 10: Date	
Sample No. 187 2 1 2 3 Reported	5-15-42
Do not mark above this line — Please print with bolipoint pen	or typewriter.
Water System I.D. No.	TAKILLILI
POINT OF COLLECTION	
WILL UN Submitter LD. No. 1441/10/20	
SEND BILLISTEIN	
RESULTS 3355 BEELCAVE PD SHIT	
TO: AUSTIN IIIII TX 78	74
CITY	ZIP CODE
Date and Time of 05 03 03 03 00 00 00 00 00 00 00 00 00 00	COLLECTED BY
TYPE OF SYSTEM	WATER SOURCE
(Public Systems Only)	River Lake
Individual Bottled Construction Repeat	Well Well Depth
128	
	hiorine Residual
Ownership or other information:	
LABORATORY REPORT (Do not write below Water of satisfactory bacteriological quality must be free from (
Coliform Organisms	
□ Found	3 / /
Total Total	~ 100 mil .
☐ Fecal ♀ 4 □ Repeat samples re	- La
Unsuitable — See below	when and the second second
UNSUITABLE FOR ANALYSIS - PLEASE RESUBMIT	
Sample too old. Sample not received Quantity is within 30 hours of collection (100 ml. n	nsufficient for analysis
Date discrepancy or form incomplete Date discrepancy or form incomplete See encircled item)	Vbacterial growth) present,
Leaked in transit	
Other 22. A1 / F 10 B	

•

P

儞 l

601

[

435 Isom Road, Suite 228 San Antonio, TX 78216 (512)340-0343

Report of:Bacteriological Analysis PCS Sample # 24057 Date Received: 6/16/92 Date Reported: 5/18/92

To: Wm. F. Guyton & Associates 3355 Bee Cave Rd., Suite 401 Austin, Tx. 78746

Attn: Mr. Bill Klemt

1

l

I

ŧ

Sample ID: Well Water #27-58E4 Date Sampled:6/16/92 Time Sampled: Date Analyzed:6/16/92

Parameter	Concentration			
F.Coliform	1 COL/100 ml			
T.Coliform	18 COL/100 ml			
F.Strep.	0 COL/100 ml			

Wallyun luch

Chuck Wallgren Owner

435 Isom Road,	Suite 228	San Antonio,	TX 78216	(512)340-034
Report of:Bacter PCS Sample # 230		Analysis		eived:5/19/92 orted:5/21/92
To: Wm. F. Guyto 3355 Bee Car Austin, Tx.	ve Rd., Sui			
Attn: Mr. Bill 1	Klemt			
Sample ID: Well Date Sampled:5/: Time Sampled: Date Analyzed:5;	19/92	5 BE 7		
Parameter	Conce	ntration		
F.Coliform T.Coliform F.Strep.	0 00	L/100 ml L/100 ml L/100 ml		

Approved By:

φ.

Ņ6

67

關

φ.

ηøλ

闒

N,

3

M

P

P

Ţ

ţ

1

A

luch Wallyun

Chuck Wallgren Owner

435 Isom Road, Suite 228 San Antonio, TX 78216 (512)340-0343

Report of:Bacteriological Analysis PCS Sample # 23958 Date Received: 6/8/92 Date Reported: 6/10/92

To: Wm. F. Guyton & Associates 3355 Bee Cave Rd., Suite 401 Austin, TX 78746

Attn: Mr. Bill Klemt

(199

ſ

100

Sample ID: Well Water #28-2AB6 Date Sampled:6/8/92 Time Sampled: Date Analyzed:6/8/92

Parameter Concentration F.Coliform 0 Col/100 ml

TI VVIII VVIII		,	
T.Coliform	0	Col/100	ml
F.Strep.	0	Col/100	ml

- Wallpen

Chuck Wallgren Owner

435 Isom Road, Suite 228 San Antonio, TX 78216 (512)340-0343

Report of:Bacteriological Analysis PCS Sample # 23952 Date Received:6/5/92 Date Reported:6/7/92

To: Wm. F. Guyton & Associates 3355 Bee Cave Rd., Suite 401 Austin, Tx. 78746

Attn: Mr. Bill Klemt

ţ

(\ (

l

l

æ

(m)

1855

Į.

國

同

l

Sample ID: Well Water #28-2HF8 Date Sampled:6/5/92 Time Sampled: Date Analyzed:6/5/92

Parameter Concentration

F.Coliform	5 COL/	100 ml
T.Coliform	280 COL/	100 ml
F.Strep.	18 COL/	100 ml

low

Chuck Wallgren Owner

WATER BACTERIOLOGY Form No. G-19 (Røv. 1/91)	Texas Department of Health Bureau of Laboratories
Date and Time Rec'd.	- 15 SDate
Do not mark above this line — Please	Reported 5-15-4) print with ballpoint pen or typowriter.
Water System I.D. No.	DIN-1PINIA
ALLY W SUBMITTOR I.D. No.	HISPOR
SEND BUILLI STOUNLILL	
RESULTS BEES BEE ADDRESS (P.O. BOX)	<u>e11541te14911111</u>
TO: ATUISTII IN I I I I I I I I I I I I I I I I I	
Date and Time of Collection MONTH DAY YEAR TIME	AMPM COLLECTED BY
	IPLE IS WATER SOURCE
Public Dairy Distribution	ystome Quiff) WATER SCORCE
Individual Bottled Construction	Repeat [] Well Well Depth
School VIRR Special	Chlorine Residual
Ownership or other information:	
Water of satisfactory bacteriological quality	
	TC: 44 / 7
Total	FC: <4 /100 ml
Unsuitable — Se] Repeat samples requised
	A PORTA
Heart	
UNSUITABLE FOR ANALYSIS - PLEASE	RESUBMIT
Sample too old. Sample not received within 30 hours of collection	Quantity insufficient for analysis (100 mL required)
Date discrepancy or form incomplete (See encircled item)	Heavy (silt/bacterial growth) present, possibly compromising test results
Leaked in transit	
Other RAT/FNL	

1900.

(M) (

1

(朝)

M

M

iiiiiii

@**.**

() | | |

ŵ

1

(m)

P

9**9**93

80e

APPENDIX 3

(

P

P

[

199

Laboratory Reports of Semivolatile Organic Analyses

Page Zotz

(

ľ

.

CORE LABORATORIES

DB NUMBER: 920923 CUSTOMER	: POLLUTION CONT	ROL SERVICES	ATTN:	CHUCK WALLGREN		
LIENT I.D: 23549 ATE SAMPLED: 05/12/92 IME SAMPLED: : DRK DESCRIPTION: 23549			DATE RECEI TIME RECEI Remarks	(I.D: 920923-000 IVED: 05/15/92 IVED: 08:15 IVED: SAMPLED BY IVED 19-6836		
EST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECH
C/MS Semivolatile Organics		*1		SW-846 8270	05/26/92	GEF
Acenaphthene	<10	10	ug/t	SW-846 8270		
Acenaphthylene	<10	10	ug/l	SW-846 8270		
Anthracene	<10	10	ug/l	SW-846 8270	1	
Benzo(a)anthracene	<10	10	ug/l	SW-846 8270		
Benzo(b)fluoranthene	<10	10	ug/l	SW-846 8270		
Benzo(k)fluoranthene	<10	10	ug/l	SW-846 8270		
Benzoic Acid	<50	50	ug/l	SW-846 8270		
Benzo(ghi)perylene	<10	10	ug/l	SW-846 8270	ł	
Benzo(a)pyrene	<10	10	ug/l	SW-846 8270		
Benzyl Alcohol	<20	20	ug/l	SW-846 8270		
Bis(2-chloroethoxy)methane	<10	10	ug/l	SW-846 8270		
Bis(2-chloroethyl)ether	<10	10	ug/l	SW-846 8270		
Bis(2-chloroisopropyl)ether	<10	10	ug/l	SW-846 8270		
Bis(2-ethylhexyl) phthalate	<50	50	ug/l	SW-846 8270		
4-Bromophenyl phenyl ether	<10	10	ug/l	SW-846 8270		
Butyl benzyl phthalate	<10	10	ug/l	SW-846 8270		
4-Chloroaniline	<50	50		SW-846 8270		
	<20	20	ug/l	SW-846 8270	i	
4-Chloro-3-methylphenol	<20	10	ug/l	SW-846 8270		
2-Chloronaphthalene 2-Chlorophenol	<10	10	ug/l ug/l	SW-846 8270		
		10		SW-846 8270		
4-Chlorophenyl phenyl ether	<10 <10	10	ug/t	SW-846 8270	1	
Chrysene		10	ug/l	SW-846 8270		
1,2-Dichlorobenzene	<10		ug/l	SW-846 8270		
1,3-Dichlorobenzene	<10	10	ug/l			
1,4-Dichlorobenzene	<10	10	ug/l	SW-846 8270		
3,3'-Dichlorobenzidine	<20	20	ug/l	SW-846 8270		
2,4-Dichlorophenol	<10	10	ug/l	SW-846 8270		
Dibenzo(a,h)anthracene	<10	10	ug/l	SW-846 8270		
Dibenzofuran	<10	10	ug/l	SW-846 8270		
Diethyl phthalate	<10	10	ug/l	SW-846 8270		
2,4-Dimethylphenol	<20	20	ug/L	SW-846 8270		
Dimethyl phthalate	<10	10	ug/l	SW-846 8270		
4,6-Dinitro-2-methylphenol	<50	50	ug/l	SW-846 8270		
2,4-Dinitrophenol	<50	50	ug/l	SW-846 8270		
2,4-Dinitrotoluene	<10	10	ug/l	SW-846 8270		
2,6-Dinitrotoluene	<10	10	ug/l	SW-846 8270		
Di-n-octyl phthalate	<10	10	ug/l	SW-846 8270		
Fluorene	<10	10	ug/l	SW-846 8270		
Fluoranthene	<10	10	ug/l	SW-846 8270		
Hexachlorobenzene	<10	10	ug/l	SW-846 8270		
Hexachlorobutadiene	<10	10	ug/l	SW-846 8270		
Hexachlorocyclopentadiene	<10	10	ug/l	SW-846 8270	ł	
Hexachloroethane	<10	10	ug/l	SW-846 8270		
· · · · · · · · · · · · · · · · · · ·	I	1	l	1	1	
				NORTH PADRE ISLAND D		
			CORPU	S CHRISTI, TX 7840	Ö	

The analyses, opnone or interpretations contained in this report are based upon observations and material suppred by the cent for whose exclusive and confidencial use this report has been mede. The interpretations or opnone supressed represent the bost judgement of Care Laboratories, however, assumes no responsibility and makes no warranty or representations, express or impled, as to the productivity, proper operations, or profitableness of any or, gas, coal or other minorel, property, well or sand in connection with which such report is used or release upon for any reason whatsoever. This report shall not be reproduced, except in its entrety, without the written approval of Care Laboratories.

Page 2 of 2

1990

Ŀ

limit

• . •

CORE LABORATORIES

B NUMBER: 920923 CUSTO	MER: POLLUTION CONT	TROL SERVICES	ATTN:	CHUCK WALLGREN		
IENT I.D: 23549 TE SAMPLED: 05/12/92 ME SAMPLED: : RK DESCRIPTION: 23549			DATE RECEI TIME RECEI	I.D: 920923-0001 VED: 05/15/92 VED: 08:15 : SAMPLED BY	BILL STEIN	
ST DESCRIPTION	FINAL RESULT	LINITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TE
Ideno(1,2,3-cd)pyrene	<10	10	ug/l	SW-846 8270		
Isophorone	<10	10	ug/l	SW-846 8270		
2-Methylnaphthalene	<10	10	ug/l	SW-846 8270		
2-Nethylphenol	<10	10	ug/l	SW-846 8270		
4-Methylphenol	<10	10	ug/l	SW-846 8270		
2-Nitroaniline	<50	50	ug/l	SW-846 8270		
3-Nitroaniline	<50	50	ug/l	SW-846 8270		
4-Nitroaniline	<20	20	ug/l	SW-846 8270		
2-Nitrophenol	<10	10	ug/l	SW-846 8270		
4-Nitrophenol	<50	50	ug/l	SW-846 8270		
N-Nitrosodi-n-propylamine	<10 <10	10	ug/l	SW-846 8270		
N-Nitrosodiphenylamine		10	ug/l	SW-846 8270		
Naphthalene	<10	10	ug/l	SW-846 8270		
Nitrobenzene	<10	10	ug/l	SW-846 8270		
Pentachlorophenol	<50	50	ug/l	SW-846 8270		
Phenanthrene	<10	10	ug/l	SW-846 8270		
Phenol	<10	10	ug/l	SW-846 8270		
Pyrene	<10	10	ug/l	SW-846 8270		
1,2,4-Trichlorobenzene	<10 <10	10	ug/l	SW-846 8270		
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	<10	10 10	ug/l	SW-846 8270	1	
		10	ug/l	SW-846 8270		
traction - Semivolatiles (BNA)	completed			SW-846 3510/3520	05/18/92	H
razine	not found			SW-846-8270	05/26/92	G
dicarb	not found			SW-846-8270	05/26/92	G
crotophos	not found			SW-846-8270	05/26/92	G
lorsulfuron	not found			SW-846-8270	05/26/92	G
rbofuran	not found			SW-846-8270	05/26/92	G
cloram + 2,4-D	not found			SW-846-8270	05/26/92	G
tsulfuron Hethyl	not found			SW-846-8270	05/26/92	G
tolachlor	not found			SW-846-8270	05/26/92	G
camba	not found			SW-846-8270	05/26/92	G
thomyl	not found			SW-846-8270	05/26/92	G
				•		

PAGE:2

The analyses, opnone or interpretations contained in this report are based upon observations and material supplied by the clent for whose exclusive and confidential use this report has been made. The interpretations or opnone expressed represent the best judgement of Care Laboratories. Care Laboratories, forward, as so the productively, proor coersions, or profitableness of any oil, gas, coal or other inneres, property, well or send in connection with which such report a sol or any reason writtenews. This report shall not be reproduced, except in its entirely, which the writen supprised or care Laboratories.

í,

CORE LABORATORIES

	ER: POLLUTION CONT	ROL SERVICES	ATTN:	CHUCK WALLGREN						
CLIENT 1.D: 23573 LABORATORY 1.D: 920923-0005 DATE SAMPLED: 05/14/92 DATE RECEIVED: 05/15/92 TIME SAMPLED: 12:00 TIME RECEIVED: 08:15 WORK DESCRIPTION: 23573 REMARKS: SAMPLED BY BILL STEIN										
T DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECH				
NS Semivolatile Organics		*1		SW-846 8270	05/26/92	GEF				
Acenaphthylene Anthracene Benzo(a)anthracene Benzo(b)fluoranthene Benzo(k)fluoranthene Benzo(cAcid Benzo(ghi)perylene Benzyl Alcohol Bis(2-chloroethoxy)methane Bis(2-chloroethoxy)methane Bis(2-chloroethoxy)methane Bis(2-chloroethyl)ether Bis(2-chloroethyl)pether Bis(2-chloroethyl)pether Bis(2-chloroethyl)pether Bis(2-chloroisopropyl)ether Bis(2-chloroisopropyl)ether Bis(2-chloroisopropyl)ether Butyl benzyl phthalate 4-Chloroaniline 4-Chloroaniline 4-Chloroanitine 4-Chloroanitine 4-Chlorophenol 2-Chlorophenol 4-Chlorophenol 4-Chlorobenzene 1,2-Dichlorobenzene 1,3-Dichlorobenzene 1,4-Dichlorobenzene 3,3'-Dichlorobenzene 3,3	<10 <10 <10 <50 <10 <20 <10 <10 <10 <50 <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	10 10 10 50 10 10 20 10 10 10 50 20 10 10 10 10 10 10 10 10 10 10 20 10 10 20 10 10 20 10 10 20 20 10 10 20 20 10 10 20 20 10 10 20 20 10 10 20 20 10 10 20 20 10 10 20 10 10 20 10 10 20 10 10 20 20 10 10 20 20 10 10 20 20 10 10 20 20 10 10 20 20 10 10 20 20 10 10 20 20 10 20 20 20 20 20 20 20 20 20 20 20 20 20	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	SW-846 8270 SW-846 8270						
Dimethyl phthalate 4,6-Dinitro-2-methylphenol 2,4-Dinitrophenol	<10 <50 <50	10 50 50	ug/l ug/l ug/l	SW-846 8270 SW-846 8270 SW-846 8270						
2,4-Dinitrotoluene 2,6-Dinitrotoluene	<10 <10	10 10	ug/l ug/l	SW-846 8270 SW-846 8270						
Di-n-octyl phthalate Fluorene Fluoranthene Hexachlorobenzene	<10 <10 <10 <10 <10 <10	10 10 10 10 10 10	ug/l ug/l ug/l ug/l ug/l ug/l	SW-846 8270 SW-846 8270 SW-846 8270 SW-846 8270 SW-846 8270 SW-846 8270 SW-846 8270						

The analyses, comorts or interpretations contained in this report are based upon observations and material supprised by the creat for whose asculate and confidential use this report has been made. The interpretations or operating expressed interpretations or operating expressed to whose asculate and confidential use this report has been made. The interpretations or operating expressed interpretations or operating expressed interpretations or operating expressed interpretations and material suppret of the best judgement of Core Laborations. Core Laborations, or profabilities of any oil, gas, coal or other maneral, property, well or sand in connection with which such report is used or revolution whatseever. This report shall not be reproduced, except in each reservery, which the written approved of Core Laborationes.

顾

1

CORE LABORATORIES

OB NUMBER: 920923 CUSTOM	ER: POLLUTION CONT	ROL SERVICES	ATTN:	CHUCK WALLGREN						
CLIENT 1.D: 23573 LABORATORY 1.D: 920923-0005 DATE SAMPLED: 05/14/92 DATE RECEIVED: 05/15/92 TIME SAMPLED: 12:00 TIME RECEIVED: 08:15 WORK DESCRIPTION: 23573 REMARKS: SAMPLED BY BILL STEIN										
EST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECI				
Ideno(1,2,3-cd)pyrene	<10	10	ug/l	SW-846 8270						
Isophorone	<10	10	ug/t	SW-846 8270						
2-Methylnaphthalene	<10	10	ug/l	SW-846 8270	l l					
2-Methylphenol	<10	10	ug/l	SW-846 8270						
4-Methylphenol	<10	10	ug/l	SW-846 8270						
2-Nitroaniline	<50	50	ug/l	SW-846 8270						
3-Nitroaniline	<50	50	ug/l	SW-846 8270						
4-Nitroaniline	<20	20	ug/l	SW-846 8270						
2-Nitrophenol	<10	10	ug/l	SW-846 8270						
4-Nitrophenol	<50	50	ug/l	SW-846 8270	1					
N-Nitrosodi-n-propylamine	<10	10	ug/l	SW-846 8270						
N-Nitrosodiphenylamine	<10	10	ug/l	SW-846 8270						
Naphthalene	<10	10	ug/l	SW-846 8270						
Nitrobenzene	<10	10	ug/l	SW-846 8270						
Pentachlorophenol	<50	50	ug/l	SW-846 8270						
Phenanthrene	<10	10	ug/l	SW-846 8270						
Phenol	<10	10	ug/l	SW-846 8270						
Pyrene	<10	10	ug/l	SW-846 8270						
1,2,4-Trichlorobenzene	<10	10	ug/l	SW-846 8270						
2,4,5-Trichlorophenol	<10	10	ug/t	SW-846 8270						
2,4,6-Trichlorophenol	<10	10	ug/l	SW-846 8270						
xtraction - Semivolatiles (BNA)	completed			SW-846 3510/3520	05/18/92	HJI				
ltrazine	not found			SW-846-8270	05/26/92	GE				
lldicarb	not found			SW-846-8270	05/26/92	GE				
Dicrotophos	not found			SW-846-8270	05/26/92	GE				
Chlorsulfuron	not found			SW-846-8270	05/26/92	GE				
Carbofuran	not found			SW-846-8270	05/26/92	GE				
Picloram + 2,4-D	not found			SW-846-8270	05/26/92	GE				
letsulfuron Methyl	not found			S₩-846-8270	05/26/92	GE				
letolachlor	not found			SW-846-8270	05/26/92	GE				
) i camba	not found			SW-846-8270	05/26/92	GE				
lethomy l	not found			SW-846-8270	05/26/92	GE				
				IORTH PADRE ISLAND DR						

The analyses, opnone or interpretations contended in this report are based upon observators and material supplied by the carnit for whose exclusive and confidential use it is report has been made. The interpretators or opnone expressed represent the bast judgement of Care Laboratories. Care Laboratories, however, assumes no responsibility and makes no warrantly or representations, express or impaid, as to the productivity, proper operations, or profitableness of any of, gas, coal or other mineral, property, well or aand in connection with which such report is used or relied upon that server. This report shall not be reproduced, except in its entropy, which the written approval of Care Laboratores.

ണ്ട

(UR

1.

CORE LABORATORIES

IENT I.D: 23550 TE SAMPLED: 05/13/92 ME SAMPLED: 10:45 RK DESCRIPTION: 23550 ST DESCRIPTION /MS Semivolatile Organics Acenaphthene Acenaphthylene Anthracene	FINAL RESULT	LIMITS/*DILUTION *1	DATE RECE Time rece	Y I.D: 920923-000 IVED: 05/15/92 IVED: 08:15 : SANPLED B' エレ スローブトレマ	Y BILL STEIN	
/MS Semivolatile Organics Acenaphthene Acenaphthylene		<u> </u>	UNITS OF MEASURE	TEST METHOD	DATE	
Acenaph thene Acenaph thy lene	-10	*1			1	TEC
Acenaphthylene	-10	1		SW-846 8270	05/26/92	GEF
Acenaphthylene	1 <10	10	ug/l	SW-846 8270		
• •	<10	10	ug/l	SW-846 8270		
	<10	10	ug/l	SW-846 8270		
Benzo(a)anthracene	<10	10	ug/l	SW-846 8270		
Benzo(b)fluoranthene	<10	10	ug/l	SW-846 8270		
Benzo(k)fluoranthene	<10	10	ug/l	SW-846 8270		
Benzoic Acid	<50	50	ug/l	SW-846 8270		
Benzo(ghi)perylene	<10	10	ug/l	SW-846 8270		
Benzo(a)pyrene	<10	10	ug/l	SW-846 8270		
Benzyl Alcohol	<20	20	ug/l	SW-846 8270		
Bis(2-chloroethoxy)methane	<10	10				
· · · · · · · · · · · · · · · · · · ·	<10	10	ug/l	SW-846 8270		
Bis(2-chloroethyl)ether			ug/l	SW-846 8270		
Bis(2-chloroisopropyl)ether	<10	10	ug/l	SW-846 8270		
Bis(2-ethylhexyl) phthalate	<50	50	ug/l	SW-846 8270		
4-Bromophenyl phenyl ether	<10	10	ug/l	SW-846 8270		
Butyl benzyl phthalate	<10	10	ug/l	SW-846 8270		
4-Chloroaniline	<50	50	ug/l	SW-846 8270		
4-Chloro-3-methylphenol	<20	20	ug/l	SW-846 8270		
2-Chloronaphthalene	<10	10	ug/l	SW-846 8270		
2-Chlorophenol	<10	10	ug/l	SW-846 8270		
4-Chlorophenyl phenyl ether	<10	10	ug/l	SW-846 8270		
Chrysene	<10	10	ug/l	SW-846 8270		
1,2-Dichlorobenzene	<10	10	lug∕l	SW-846 8270		
1,3-Dichlorobenzene	<10	10	ug/l	SW-846 8270		
1,4-Dichlorobenzene	<10	10	ug/l	SW-846 8270		
3,3'-Dichlorobenzidine	<20	20	ug/l	SW-846 8270		
2,4-Dichlorophenol	<10	10	ug/l	SW-846 8270		
Dibenzo(a,h)anthracene	<10	10	ug/l	SW-846 8270		
Dibenzofuran	<10	10	ug/l	SW-846 8270		
Diethyl phthalate	<10	10	ug/l	SW-846 8270		
2,4-Dimethylphenol	<20	20	ug/L	SW-846 8270	}	
Dimethyl phthalate	<10	10	ug/l	SW-846 8270		
4,6-Dinitro-2-methylphenol	<50	50	ug/l	SW-846 8270	1	
2,4-Dinitrophenol	<50	50	ug/l	SW-846 8270		
2.4-Dinitrotoluene	<10	10	ug/l	SW-846 8270	ł	
2,6-Dinitrotoluene	<10	10	ug/l	SW-846 8270		
Di-n-octyl phthalate	<10	10	ug/l	SW-846 8270		
fluorene	<10	10	ug/l	SW-846 8270		
Fluoranthene	<10					
Kexachlorobenzene	<10	10 10	ug/l	SW-846 8270 SW-846 8270		
Hexachlorobutadiene	<10	10	ug/l			
Hexachlorocyclopentadiene	<10	10	ug/l	SW-846 8270		
Hexachlorocyclopentaciene	<10	10	ug/l ug/l	SW-846 8270 SW-846 8270		
				J#-040 0270		
	**	- · · · · · · · · · · · · · · · · · · ·	1733	NORTH PADRE ISLAND	DRIVE	
				S CHRISTI, TX 784 289-2673	08	

The analyses, opnore or interpretations contained in this report are based upon observations and material supplied by the clent for whose exclusive and confidencial use this report has been made. The interpretations or opnices expressed represent the boot judgement of Care Laboratorics. Core Laboratorics, cor profileblences of any oil, gas, coal or other minorel, property, well or sand in connection with which such report is used or oriend upon to any reason which such report are boot profileblences of any oil, gas, coal or other minorel, property, well or sand in connection with which such report is used or reveal upon reveal upon reveal upon relations. This report plash not be reproduced, except in its instruct, whout the written approval of Care Laboratoria.

• .

CORE LABORATORIES

JOB NUMBER: 920923 CUSTOME	R: POLLUTION CONT	06/16/92 ROL SERVICES	ATTN:	CHUCK WALLGREN		
ELIENT I.D 23550 ATE SAMPLED: 05/13/92 IME SAMPLED: 10:45 FORK DESCRIPTION: 23550			DATE RECE TIME RECE REMARKS	(I.D: 920923-0002 IVED: 05/15/92 IVED: 08:15 : SAMPLED BY F この タローフHDG	BILL STEIN	
TEST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TEC
Ideno(1,2,3-cd)pyrene Isophorone 2-Methylnaphthalene 2-Methylphenol 4-Methylphenol 2-Nitroaniline 3-Nitroaniline 4-Nitrophenol 4-Nitrophenol N-Nitrosodi-n-propylamine N-Nitrosodiphenylamine Naphthalene Nitrobenzene Pentachlorophenol Phenanthrene Phenol Pyrene	<10 <10 <10 <10 <50 <50 <20 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	10 10 10 50 50 20 10 50 10 10 10 50 10 10 10 10	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	SW-846 8270 SW-846 8270		
1,2,4-Trichlorobenzene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol Extraction - Semivolatiles (BNA)	<10 <10 <10 <10	10 10 10	ug/l ug/l ug/l	SW-846 8270 SW-846 8270 SW-846 8270 SW-846 8270	05/18/92	н.
Atrazine	not found			SW-846-8270	05/26/92	G
Aldicarb	not found			SW-846-8270	05/26/92	GE
Dicrotophos	not found			SW-846-8270	05/26/92	GE
Chlorsulfuron	not found			SW-846-8270	05/26/92	GE
Carbofuran	not found			SW-846-8270	05/26/92	GE
Picloram + 2,4-D	not found			SW-846-8270	05/26/92	GE
Netsulfuron Methyl	not found			SW-846-8270	05/26/92	GE
Netolachlor	not found			SW-846-8270	05/26/92	GE
Dicamba	not found			SW-846-8270	05/26/92	GE
Nethomyl	not found			sw-846-8270	05/26/92	G
		<u> </u>	CORPU	NORTH PADRE ISLAND DR S CHRISTI, TX 78408 289-2673		

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the cent for whose exclusive and confidential use this report has been made. The interpretations or connens expressed repressed repressed repressed to be based upon observations, control and material supplied by the cent for whose exclusive and confidential use this report has been made. The interpretations or connens expressed repressed repressed to be starting or more analysis, express or implied, as to the productivity, proor coordinates, or profusioned and or connection with which such report is used or relead upon for any reason whatsoever. This report shall not be reproduced, except in its entroly, whost the written approval of Core Laborationed.

(Mar)

CORE LABORATORIES

	LABORAT	ORY TESTS 06/16/92	RESULTS			
OB NUMBER: 920923 CUSTOM	ER: POLLUTION CONT	ROL SERVICES	ATTN:	CHUCK WALLGREN		
LIENT I.D: 23551 ATE SAMPLED: 05/13/92 IME SAMPLED: 12:30 WORK DESCRIPTION: 23551			DATE RECEI Time recei	1.D: 920923-0003 VED: 05/15/92 VED: 08:15 : SAMPLED BY E エロ マフーろものを	BILL STEIN	
EST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TEC
Ideno(1,2,3-cd)pyrene	<10	10	ug/l	SW-846 8270		
Isophorone	<10	10	ug/l	SW-846 8270		
2-Methylnaphthalene	<10	10	ug/l	SW-846 8270		
2-Methylphenol	<10	10	ug/l	SW-846 8270		
4-Methylphenol	<10	10	ug/l	SW-846 8270		
2-Nitroaniline	<50	50	ug/l	SW-846 8270		
3-Nitroaniline	<50	50	ug/l	SW-846 8270		
4-Nitroaniline	<20	20	ug/l	SW-846 8270		
2-Nitrophenol	<10	10	ug/l	SW-846 8270		
4-Nitrophenol	<50	50	ug/l	SW-846 8270		
N-Nitrosodi-n-propylamine	<10	10	ug/l	SW-846 8270		
N-Nitrosodiphenylamine	<10	10	ug/l	SW-846 8270		
Naphthalene	<10	10	ug/l	SW-846 8270	1	
Nitrobenzene	<10	10	ug/t	SW-846 8270		
Pentachlorophenol	<50	50	ug/l	SW-846 8270		
Phenanthrene	<10	10	ug/l	SW-846 8270		
Phenol	<10	10	ug/l	SW-846 8270		
Pyrene	<10	10	ug/l	SW-846 8270		
1,2,4-Trichlorobenzene	<10	10	ug/l	SW-846 8270		
2,4,5-Trichlorophenol	<10	10	ug/l	SW-846 8270		
2,4,6-Trichlorophenol	<10	10	ug/l	SW-846 8270		
xtraction - Semivolatiles (BNA)	completed			SW-846 3510/3520	05/18/92	H.
trazine	not found			SW-846-8270	05/26/92	GE
ldicarb	not found			SW-846-8270	05/26/92	GE
licrotophos	not found			SW-846-8270	05/26/92	GE
chlorsulfuron	not found			SW-846-8270	05/26/92	GE
arbofuran	not found			SW-846-8270	05/26/92	GE
Picloram + 2,4-D	not found			SW-846-8270	05/26/92	GE
letsul furon Methyl	not found			SW-846-8270	05/26/92	GE
letolachlor	not found			SW-846-8270	05/26/92	GE
licamba	not found			SW-846-8270	05/26/92	GE
lethomyl	not found			SW-846-8270	05/26/92	GI
			CORPUS	IORTH PADRE ISLAND DR 5 CHRISTI, TX 78408 289-2673	IVE	

Pege 1 of 2

The analysis, comons or interpretations contained in this report are based upon observations and material supplied by the cient for whose exclusive and confidential use this report has been made. The interpretations or openant expressed represent the bast judgement of Core Laboratories. Core Laboratories, no profitableness of any oil, gas, cost or other minoral, property, which are confidential use this report, we careful in connection with which such report is used or revolution or any reason whatsoever. This report shall not be reproduced, except in its introlly, which the writin approval of Core Laboratories.

Ń

M

CORE LABORATORIES

DB NUMBER: 920923 CUSTOME	R: POLLUTION CONT	ROL SERVICES	ATTN:	CHUCK WALLGREN		
LIENT I.D 23551 ATE SAMPLED 05/13/92 IME SAMPLED 12:30 ORK DESCRIPTION: 23551			DATE RECEI TIME RECEI REMARKS	(I.D: 920923-00 IVED: 05/15/92 IVED: 08:15 : SAMPLED B エロ ディー うまし	Y BILL STEIN	
EST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECH
C/MS Semivolatile Organics		*1		SW-846 8270	05/26/92	GEI
Acenaphthene	<10	10	ug/l	SW-846 8270		
Acenaphthylene	<10	10	ug/l	SW-846 8270		
Anthracene	<10	10	ug/l	SW-846 8270		
Benzo(a)anthracene	<10	10	ug/l	SW-846 8270		
Benzo(b)fluoranthene	<10	10	ug/l	SW-846 8270		
Benzo(k)fluoranthene	<10	10	ug/l	SW-846 8270		
Benzoic Acid	<50	50	ug/l	SW-846 8270		
Benzo(ghi)perylene	<10	10	ug/l	SW-846 8270	1	
Benzo(a)pyrene	<10	10	ug/l	SW-846 8270		
Benzyl Alcohol	<20	20	ug/l	SW-846 8270		
Bis(2-chloroethoxy)methane	<10	10	ug/l	SW-846 8270		
Bis(2-chloroethyl)ether	<10	10	ug/l	SW-846 8270		
Bis(2-chloroisopropyl)ether	<10	10	ug/l	SW-846 8270		
Bis(2-ethylhexyl) phthalate	<50	50	ug/l	SW-846 8270		
4-Bromophenyl phenyl ether	<10	10	ug/l	SW-846 8270		
Butyl benzyl phthalate	<10	10	ug/l	SW-846 8270		
4-Chloroaniline	<\$0	50	ug/l	SW-846 8270		
4-Chloro-3-methylphenol	<20	20	ug/l	SW-846 8270		
2-Chloronaphthalene	<10	10	ug/l	SW-846 8270		
2-Chlorophenol	<10	10	ug/l	SW-846 8270		
4-Chlorophenyl phenyl ether	<10	10	ug/l	SW-846 8270		
Chrysene	<10	10	ug/l	SW-846 8270		
1,2-Dichlorobenzene	<10	10	ug/l	SW-846 8270		
1,3-Dichlorobenzene	<10	10	ug/l	SW-846 8270		
1,4-Dichlorobenzene 3,3'-Dichlorobenzidine	<10	10	ug/l	SW-846 8270		
	<20	20	ug/l	SW-846 8270		
2,4-Dichlorophenol Dibenzo(a,h)anthracene	<10 <10	10 10	ug/l	SW-846 8270		
Dibenzofuran	<10	10	ug/l	SW-846 8270		
Diethyl phthalate	<10	10	ug/t	SW-846 8270 SW-846 8270		
2,4-Dimethylphenol	<20	20	ug/l ug/L	SW-846 8270		
Dimethyl phthalate	<10		ug/l	SW-846 8270		
4,6-Dinitro-2-methylphenol	<50	50	ug/l	SW-846 8270		
2,4-Dinitrophenol	<50	50	ug/l	SW-846 8270		
2,4-Dinitrotoluene	<10	10	ug/t	SW-846 8270		
2,4-Dinitrotoluene	<10	10	ug/l	SW-846 8270	1	
Di-n-octyl phthalate	<10	10	ug/l	SW-846 8270		
Fluorene	<10	10	ug/t	SW-846 8270		
Fluoranthene	<10	10	ug/l	SW-846 8270		
Hexachlorobenzene	<10	10	ug/l	SW-846 8270		
Nexachlorobutadiene	<10	10	ug/l	SW-846 8270		
Hexachlorocyclopentadiene	<10	10	ug/l	SW-846 8270		
Kexachloroethane	<10	10	ug/l	SW-846 8270		
	1	I	l	1	1	
				NORTH PADRE ISLAND		
			CORPUS	S CHRISTI, TX 784	un	

The enayses, contons or marprelations contained in this report are based upon observations and material supplied by the clerit for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgement of Core Laborations. Core Laborations, or portabilities and material supplied by the clerit for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgement of Core Laborations. Core Laborations, or portabilities of any oil, gas, coal or other minoral, property, well or sand in connection with which such report is laborations. This report shall not be reproduced, except in its entirely, whose the writen approval of Core Laborations.

۱_

Ł

L.

1

M

l

[

1.

CORE LABORATORIES

DB NUMBER: 920923 CUSTOME	R: POLLUTION CONT	IROL SERVICES	ATTN:	CHUCK WALLGREN		-
.IENT I.D: 23552 ATE SAMPLED: 05/13/92 IME SAMPLED: 15:45 DRK DESCRIPTION: 23552			DATE RECE TIME RECE REMARKS	Y I.D: 920923-00 IVED: 05/15/92 IVED: 08:15 : SAMPLED B SAMPLED B	Y BILL STEIN	
ST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECH
C/MS Semivolatile Organics		*1		SW-846 8270	05/26/92	GEF
Acenaphthene	<10	10	ug/l	SW-846 8270	1	
Acenaphthylene	<10	10	ug/l	SW-846 8270		
Anthracene	<10	10	ug/l	SW-846 8270		
Benzo(a)anthracene	<10	10	ug/l	SW-846 8270		
Benzo(b)fluoranthene	<10	10	ug/l	SW-846 8270		
Benzo(k)fluoranthene	<10	10	ug/l	SW-846 8270		
Benzoic Acid	<50	50	ug/l	SW-846 8270		
Benzo(ghi)perylene	<10	10	ug/l	SW-846 8270		
Benzo(a)pyrene	<10	10	ug/l	SW-846 8270		
Benzyl Alcohol	<20	20	ug/l	SW-846 8270		
Bis(2-chloroethoxy)methane	<10	10	ug/l	SW-846 8270		
Bis(2-chloroethyl)ether	<10	10	ug/l	SW-846 8270		
Bis(2-chloroisopropyl)ether	<10	10	ug/l	SW-846 8270		
Bis(2-ethylhexyl) phthalate	<50	50	ug/l	SW-846 8270		
4-Bromophenyl phenyl ether	<10	10	ug/l	SW-846 8270		
Butyl benzyl phthalate	<10	10	ug/l	SW-846 8270		
4-Chloroaniline	<50	50	ug/l	SW-846 8270		
4-Chloro-3-methylphenol 2-Chloronaphthalene	<20 <10	20	ug/l	SW-846 8270		
2-Chlorophenol	<10	10	ug/l	SW-846 8270		
4-Chlorophenyl phenyl ether	<10	10	ug/l	SW-846 8270 SW-846 8270		
Chrysene	<10	10	ug/l	SW-846 8270		
1,2-Dichlorobenzene	<10	10	ug/l	SW-846 8270		
1,3-Dichlorobenzene	<10	10	ug/l	SW-846 8270		
1.4-Dichlorobenzene	<10	10	ug/l ug/l	SW-846 8270		
3,3'-Dichlorobenzidine	<20	20	ug/l	SW-846 8270		
2,4-Dichlorophenol	<10	10	ug/l	SW-846 8270		
Dibenzo(a,h)anthracene	<10	10	ug/l	SW-846 8270		
Dibenzofuran	<10	10	ug/l	SW-846 8270		
Diethyl phthalate	<10	10	ug/l	SW-846 8270		
2,4-Dimethylphenol	<20	20	ug/L	SW-846 8270		
Dimethyl phthalate	<10	10	ug/l	SW-846 8270		
4,6-Dinitro-2-methylphenol	<50	50	ug/l	SW-846 8270		
2,4-Dinitrophenol	<50	50	ug/l	SW-846 8270		
2,4-Dinitrotoluene	<10	10	ug/l	SW-846 8270		
2,6-Dinitrotoluene	<10	10	ug/l	SW-846 8270		
Di-n-octyl phthalate	<10	10	ug/l	SW-846 8270		
Fluorene	<10	10	ug/l	SW-846 8270		
Fluoranthene	<10	10	ug/l	SW-846 8270		
Hexachlorobenzene	<10	10	ug/l	SW-846 8270		
Hexachlorobutadiene	<10	10	ug/l	SW-846 8270		
Hexachlorocyclopentadiene Hexachloroethane	<10 <10	10 10	ug/l ug/l	SW-846 8270 SW-846 8270		
	I			<u> </u>		
				NORTH PADRE ISLAND		
			C0001	S CHRISTI, TX 784	00	

The analyses, opnore or interpretations contained in this report are based upon observations and instantel supplied by the cleant for whose suppose and confidential use this report has been made. The interpretations or opnices expressed inspresent the best judgement of Core Laborationes. Core Laborationes, or profabilities of any oil, gas, coal or other manarel, property, will or sand in connection with which such report is used or revolucion or any reason whatsoover. This report shall not be reproduced, except in its entirety, which the writion approved of Core Laborationes.

Page 2012

P

\$_

Į

100

t

.

CORE LABORATORIES

B NUMBER: 920923 CUSTOM	ER: POLLUTION CONT	ROL SERVICES	ATTN:	CHUCK WALLGREN	· · · ·	
IENT I.D: 23552 NTE SAMPLED: 05/13/92 ME SAMPLED: 15:45 ORK DESCRIPTION: 23552			DATE RECEI TIME RECEI REMARKS	(I.D: 920923-0004 IVED: 05/15/92 IVED: 08:15 : SAMPLED BY B アレーション・ション・ション・ション・ション・ション・ション・ション・ション・ション・	ILL STEIN	
IST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TEC
Ideno(1,2,3-cd)pyrene	<10	10	ug/l	SW-846 8270	-	
Isophorone	<10	10	ug/l	SW-846 8270		
2-Methylnaphthalene	<10	10	ug/l	SW-846 8270	Î	
2-Methylphenol	<10	10	ug/l	SW-846 8270		
4-Methylphenol	<10	10	ug/l	SW-846 8270		
2-Nitroaniline	<50	50	ug/l	SW-846 8270		
3-Nitroaniline	<50	50	ug/l	SW-846 8270		
4-Nitroaniline	<20	20	ug/l	SW-846 8270		
2-Nitrophenol	<10	10	ug/l	SW-846 8270		
4-Nitrophenol	<50	50	ug/l	SW-846 8270		
N-Nitrosodi-n-propylamine	<10	10	ug/l	SW-846 8270		
N-Nitrosodiphenylamine	<10	10	ug/l	SW-846 8270		
Naphthalene	<10	10	ug/l	SW-846 8270		
Nitrobenzene	<10 <50	50	ug/l	SW-846 8270		
Pentachlorophenol Phenanthrene	<10	10	ug/l	SW-846 8270 SW-846 8270		
Phenol	<10	10	ug/l	SW-846 8270		
Pyrene	<10	10	ug/l	SW-846 8270		
1,2,4-Trichlorobenzene	<10	10	ug/l ug/l	SW-846 8270		
2,4,5-Trichlorophenol	<10	10	ug/l	SW-846 8270		
2,4,6-Trichlorophenol	<10	10	ug/l	SW-846 8270		
2,4,0 Triteritor oprenov		10	037.0			
<pre>ktraction - Semivolatiles (BNA)</pre>	completed			SW-846 3510/3520	05/18/92	HJ
trazine	not found			SW-846-8270	05/26/92	GE
ldicarb	not found			SW-846-8270	05/26/92	GE
icrotophos	not found			SW-846-8270	05/26/92	GE
lorsulfuron	not found			SW-846-8270	05/26/92	GE
arbofuran	not found			SW-846-8270	05/26/92	GE
icloram + 2,4-D	not found			SW-846-8270	05/26/92	GE
etsulfuron Methyl	not found			SW-846-8270	05/26/92	GE
etolachlor	not found			SW-846-8270	05/26/92	GE
i camba	not found			SW-846-8270	05/26/92	GE
ethomyl	not found			SW-846-8270	05/26/92	GE

The analysis, opnons or interpretations contained in this report are based upon observations and mational supplied by the cash: for whose exclusive and confidented use this report has been made. The interpretations or opnions expressed represent to whose exclusive and confidented use this report has been made. The interpretations or opnions expressed represent the bast judgement of Core Laboratores. Core Laboratores, no restantishers or any reason what has been made, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other manyer, property, well or same of a sub-report of used or reveal upon to any reason what soever. This report shaft no be reproduced, except in its entroly, which she writen approval of Core Laboratores.

APPENDIX 4

?

ſ

ſ

ſ

Laboratory Reports of Volatile Organic Analyses

156

Ľ.

ľ

Į

ŀ

Ľ.

CORE LABORATORIES

OB NUMBER: 921158 CUSTOME	R: POLLUTION CONT	TROL SERVICES	ATTN:	CHUCK WALLGREN	-	
LIENT I.D 24003 ATE SAMPLED: 06/10/92 IME SAMPLED: 15:00 ORK DESCRIPTION: 24003			DATE RECE TIME RECE	Y I.D: 921158-00 IVED: 06/13/92 IVED: 11:00 : WELL IT		
EST DESCRIPTION	FINAL RESULT	LINITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECH
C/MS VOLATILE ORGANICS (WATER)		*1		SW-846 8260	06/17/92	BJH
Acetone	<50	50	ug/l	SW-846 8260		
Acrolein	<50	50	ug/l	SW-846 8260		
Acrylonitrile	<50	50	ug/l	SW-846 8260		
Benzene	<5	5	ug/l	SW-846 8260		
Bromodichloromethane	5	5	ug/l	SW-846 8260	ł	
Bromoform	ंड	Ś	ug/l	SW-846 8260		
Bromomethane	4	5	ug/l	SW-846 8260		
2-Butanone	<10	10	ug/l	SW-846 8260		
Carbon disulfide	<5	5	ug/l	SW-846 8260		
Carbon tetrachloride	5		ug/l	SW-846 8260		
	5					
Chlorobenzene Chlorodibromomethane	<5		ug/t	SW-846 8260		
	\$	5 5 5 5 5 5 5	ug/t	SW-846 8260		
Chlorcethane	<5	5	ug/l	SW-846 8260		
2-Chloroethylvinyl ether	<5	5	ug/l	SW-846 8260		
Chloroform	<5	5	ug/l	SW-846 8260		
Chloromethane	<5	5	ug/l	SW-846 8260		
Dibromomethane	<5	5	ug/l	SW-846 8260		
Dichlorodifluoromethane	<10	10	ug/l	SW-846 8260		
1,1-Dichlorcethane	<5	5	ug/l	SW-846 8260		
1,2-Dichloroethane	5	5	ug/l	SW-846 8260		
1,1-Dichloroethene	<5	5	ug/l	SW-846 8260		
trans-1,2-Dichloroethene	<5	5	ug/l	SW-846 8260		
1,2-Dichloropropane	<5	5	ug/l	SW-846 8260		
cis-1,3-Dichloropropene	<5	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/l	SW-846 8260		
trans-1,3-Dichloropropene	<5	5	ug/l	SW-846 8270		
Ethylbenzene	<5 <5	5	ug/t	SW-846 8260		
Ethyl methacrylate	<5	5	ug/l	SW-846 8260		
2-Hexanone	ं	5	ug/l	SW-846 8260		
Iodomethane	<5 <5	5	ug/l	SW-846 8260		
Methylene chloride	<5	5	ug/l	SW-846 8260		
4-Methyl-2-pentanone	-5	5	ug/l	SW-846 8260		•
Styrene	<5	5	ug/l	SW-846 8260		
1,1,2,2-Tetrachloroethane	Ś	5	ug/l	SW-846 8260		
Tetrachloroethene	<5	5	ug/l	SW-846 8260		
Toluene	<5	5	ug/l	SW-846 8260	1	
1,1,1-Trichloroethane	45	Ś	ug/l	SW-846 8260		
1,1,2-Trichloroethane	<5	ŝ	ug/l	SW-846 8260		
Trichloroethene	~5	ŝ	ug/l	SW-846 8260		
Trichlorofluoromethane	<5	5	ug/l	SW-846 8260		
1,2,3-Trichloropropane		S S	ug/l	SW-846 8260		
Vinyl acetate	<10	10		SW-846 8260		
Vinyl acetate Vinyl chloride	<5	5	ug/l ug/l	SW-846 8260		
Total Xylenes	<15	15	ug/l	SW-846 8260		
iotat Aytenes	512	5		34-040 0200		
			1733 1	ORTH PADRE ISLAND	DRIVE	
				S CHRISTI, TX 784		

The analyses, opmons or interpretations contained in this report are based upon observations and material supplied by the cleart for whose exclusive and confidential use this report has been mede. The interpretations or expressed represent the best judgement of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes ne warrantly or representations, espress or implied, as to the productivity, proper operations, or profilableness of any oil, gas, coal or other mineral, property, well or sand in connection with which auch report is used or raised upon for any resson whatsoever. This report is is not be reproduced, except in its ontrety, whout the written approval of Core Laboratories.

M

1

Į.

155

ť

l

łı.

鳳

CORE LABORATORIES

			· · · · · · · · · · · · · · · · · · ·			
ENT I.D: 24004 E SAMPLED: 06/10/92 E SAMPLED: 14:55 K DESCRIPTION: 24004			DATE RECE TIME RECE	Y I.D: 921158-00 IVED: 06/13/92 IVED: 11:00 : WELL D (Field		
T DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECH
MS VOLATILE ORGANICS (WATER)		*1		SW-846 8260	06/17/92	BJH
Acetone Acrolein Acrylonitrile Benzene Bromodichloromethane Bromodichloromethane Bromomethane 2-Butanone Carbon disulfide Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chloroethane 2-Chloroethylvinyl ether Chloroform Chloromethane Dibromomethane Dibromomethane Dichlorodifluoromethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,2-Dichloropropene trans-1,3-Dichloropropene Ethylbenzene Ethyl methacrylate 2-Hexanone Iodomethane Methylene chloride 4-Methyl-2-pentanone Styrene 1,1,2,2-Tetrachloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,2,3-Trichloropropane	\$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$0 \$	50 50 55 55 55 55 55 55 55 55 55 55 55 5	ug/l ug/l ug/l ug/l ug/l ug/l ug/l ug/l	SW-846 8260 SW-846 8260		
Vinyl acetate Vinyl chloride	<10 <5 <15	10 5 15	ug/l ug/l ug/l	SW-846 8260 SW-846 8260 SW-846 8260		

The analyses, opnons or interpretations contained in this report are based upon observations and material supplied by the clent for whose exclusive and confidential use this report has been mede. The interpretations or opnons expressed represent the best judgement of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productively, proper operations, or profitableness of any oil, gas, cost or other mineral, property, well or sand in connection won which such report is used or relice unitial gas or warranty or reports and not shall not be reproduced, except in its entitiely, which the writen approved of Core Laboratories.

P

580.

ţ

CORE LABORATORIES

	IER: POLLUTION CONT	ROL SERVICES	ATTN:	CHUCK WALLGREN		
IENT I.D: 24031 ITE SAMPLED: 06/12/92 ME SAMPLED: 11:10 IRK DESCRIPTION: 24031			DATE RECE TIME RECE	Y I.D: 921158-00 IVED: 06/13/92 IVED: 11:00 		8
ST DESCRIPTION	FINAL RESULT	LIMITS/*DILUTION	UNITS OF MEASURE	TEST METHOD	DATE	TECH
/MS VOLATILE ORGANICS (WATER)		*1		SW-846 8260	06/17/92	BJI
Acetone Acrolein Acrylonitrile Benzene Bromodichloromethane Bromomethane 2-Butanone Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorodibromomethane Chloroethane 2-Chloroethylvinyl ether Chloroethane Dibromomethane Dibromomethane Dibromomethane 1,1-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloroethane 1,2-Dichloropropane cis-1,3-Dichloropropene trans-1,2-Dichloropropene Ethylbenzene Ethyl methacrylate 2-Hexanone Iodomethane Nethylene chloride 4-Hethyl-2-pentanone Styrene 1,1,2-Trichloroethane 1,1-Trichloroethane 1,1,2-Trichloroethane 1,2-Trichloroethane 1,2-Trichloroethane 1,2-Trichloroethane	\$0\$	10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/l ug/l <t< td=""><td>SW-846 8260 SW-846 /td><td></td><td></td></t<>	SW-846 8260 SW-846		
1,2,3-Trichloropropane	<5 <10 <5	5 10 5	ug/l ug/l ug/l	SW-846 8260 SW-846 8260 SW-846 8260		

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the client for whose exclusive and confidential use this report has been made. The manyrestations or opinione expressed interview in the transmission of the client for whose exclusive and confidential use this report has been made. The manyrestations or opinione expressed interview is the set udgement of Core Laborationes. Core Laborationes, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proport experision, or profitableness of any oil, gas, coard or other mineral, property, well or sand in connection with which such report is used or relied upon for any reason whatsever. This report shall not be reproduced, except in its entirety, which the written approxiel of Core Laborationes.

(M) K

쪪

(

	teres final	06/2	9792			
JOB NUMBER: 921158 C	USTOMER: POLLUTION	CONTROL SERVICES		ATTN: CHUCK	ALLGREN	
Volatiles Matrix Spike Compour	ds DATE ANALYZED	: 06/17/92 TIME	ANALYZED: 11:42	METHOD: SW-846	8260 Q	C NUMBER:92685
		BLAN	1			1
TEST DESCRIPTION	ANALY SUB-TYPE		DILUTION FACTOR			
Chloromethane Vinyl chloride	Reagent Reagent	D.Water D.Water	1	<5 <5	5	ug/l ug/l
1,1-Dichloroethene	Reagent	D.Water	1	<5	5	ug/t
1,1-Dichloroethane	Reagent	D.Water D.Water		<5	5	ug/l
Chloroform Benzene	Reagent Reagent	D.Water		5	5	ug/l ug/l
Trichloroethene		D.Water	i	5	Ś	ug/l
1,2-Dichloropropane	Reagent	D.Water	1	<5	5	ug/l
Toluene	Reagent	D.Water	1 1	5	5	ug/l
Chlorobenzene Ethylbonzene	Reagent	D.Water D.Water		5	5	ug/l
Ethylbenzene Bromoform	Reagent Reagent	D.Water D.Water			5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ug/l ug/l
1,1,2,2-Tetrachloroethane		D.Water	i	<5	Ś	ug/l
		1		1		-
		1		1		1
			1			
]
						1
•						
			1			
			1			
		}				ł
			1			
						1
	1	l	I	l 		I
					DRE ISLAND DRIV	E
				CORPUS CHRIST (512) 289-267	1, TX 78408	
				1216J 207-20	الاست ا	

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the clent for whose exclusive and confidential use this report has been made. The interpretations or opinions expressed represent the best judgement of Core Laborationes. Core Laborationes, or portiableness of any or, gas, coal or other mineral, property, well or sand in connection with which such report is used or relead upon tor any reason whatsoever. This report shall not be reproduced, except in its introly, without the written approval of Core Laborationes.

ſ

Į.

l

Į

K

Į.

P

Ì

......

Į

1867

Ι.

CB NUMBER: 921158 CUST	OMER: POLLUT	ION CONTROL	SERVICES		ATTN: C	HUCK WALLGRE	N	
<u>an an an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna an Anna a</u>								
olatiles Matrix Spike Compounds	DATE ANAL	YZED: 06/17/	92 TIME AN	ALYZED: 11:42	2 METHOD: SI	W-846 8260	QC 1	UMBER : 9268
		REFERE	NCE S	TANDARC) S			
EST ESCRIPTION	ANALYSIS SUB-TYPE	ANALYSIS I. D.	DILUTION	ANALYZED VALUE	TRUE VALUE	PERCENT RECOVERY	DETECTION	UNITS OF MEASURE
ibromofluoromethane	Reference	Bk20.19.4	1	43	50	86	5	ug/l
oluene d-8	Reference	Bk20.19.4	1	48	50	96	5	ug/l
-Bromofluorobenzene	Reference	Bk20.19.4	1	53	50	106	5	ug/l
hloromethane	Reference	Bk20.19.4	1	15	20	75	5	ug/l
inyl chloride	Reference	Bk20.19.4	i	19	20	95	l s	ug/l
,1-Dichloroethene	Reference	8k20.19.4	i	28	20	140	5	ug/l
, I-Dichloroethene				23	20			
, 1-Dichloroethane	Reference	Bk20.19.4				115	5	ug/l
hloroform	Reference	Bk20.19.4	1	18	20	90	5	ug/l
enzene	Reference	Bk20.19.4	1	27	20	135	5	ug/l
richloroethene	Reference	Bk20.19.4	1	29	20	145	5	ug/l
,2-Dichloropropane	Reference	Bk20.19.4	1	28	20	140	5	ug/l
oluene	Reference	Bk20.19.4	1	27	20	135	5	ug/l
hlorobenzene	Reference	Bk20.19.4	1	21	20	105	5	ug/l
thylbenzene	Reference	8k20.19.4	i	17	20	85	Š	ug/1
romoform	Reference	8k20.19.4	i	21	20	105	5	ug/l
,1,2,2-Tetrachloroethane	Reference	Bk20.19.4	1	27	20	135	5	ug/l
11, E, E TELL ACH LOF VELNANC	A CIERCE	0120.17.4	1	61	20			aav t
	1			1		1		I
		1			1			
		1			ļ			
		1			1			
		1		1			1	
						1		
	1]		1		1		
	1	1	1	1	1	1		l
	1	1		1		i		
				1	1	i i		
					1		1	
		1]			1	
				1	1		I I	
				1				
		1						
		1						
		1					I	
		1						
		1	1					
		1	1	1				
				1				
		1	1					
		1		}	1	1		
	1	1		1	1	1		
		1	1				1	ļ
		1	1]	
		1	1		1	1		
	1				1	I		
					1	t		
	1	1		1	1	T	1	
	1	1		1	1	ľ		
		1		1				
		1						
	I	<u> </u>	<u> </u>	1	·	I	1	l
					1777 NO	RTH PADRE IS	LAND DOTVE	
						CHRISTI, TX	78408	

The analyses, opnone or interpretations contained in this report are based upon observations and material supplied by the cleret for whose suplusive and confidential use this report has been made. The interpretations or opnone supressed represent the basis judgement of Core Laboratories. Core Laboratories, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profitableness of any oil, gas, coal or other innersit, property, well or sand in connection with which such report is used or reliad upon for any reason whatsoever. This report shall not be reproduced, except in its entirely, whout the writen approval of Core Laboratories.

P

1

JCB NUMBER: 921158	CUSTOMER: P	OLLUTION CO	NTROL SERVI	CES		ATTN: CHU	JCK WALLGRE	N	
Volatiles Matrix Spike Compo	unds DATE	ANALYZED:	06/17/92 T	IME ANALYZE	D: 11:42 M	ETHOD: SW	846 8260	ac	NUMBER : 9268
· · · · · · · · · · · · · · · · · · ·			MATRIX	S P I I	(E S				
TEST DESCRIPTION	ANALYSIS SUB-TYPE	ANALYSIS I. D.	DILUTION FACTOR	ANALYZED VALUE	ORIGINAL VALUE	SPIKE ADDED	PERCENT	DETECTION	UNITS OF MEASURE
Dibromofluoromethane	Matrix Natrix Matrix	921158-00 921158-1 921158-2	1 1	43 52 55	0 0 0	50 50 50	86 104 110	5 5 5	ug/l ug/l ug/l
Toluene d-8	Matrix Matrix Matrix Matrix	921158-3 921158-00 921158-1 925115-2		53 48 48 47	0 0 0	50 50 50 50	106 96 96 94	5 5 5 5	ug/l ug/l ug/l
4-Bromofluorobenzene	Matrix Matrix Matrix	921158-3 921158-00 921158-1	1 1 1	47 53 48	0 0 0	50 50 50	94 106 96	5 5 5	ug/l ug/l ug/l ug/l
Chloromethane Vinyl chloride	Matrix Matrix Matrix Matrix	921158-2 921158-3 921158-3 921158-3 921158-3	1 1 1 1	50 50 23 24	0 0 0	50 50 25 25	100 100 92 96	5 5 5 5	ug/l ug/l ug/l ug/l
1,1-Dichloroethene 1,1-Dichloroethane Chloroform	Matrix Matrix Matrix	921158-3 921158-3 921158-3		22 26 28	0	25 25 25	88 104 112	5 5 5	ug/l ug/l ug/l
Benzene Trichloroethene 1,2-Dichloropropane Toluene	Matrix Matrix Matrix Matrix	921158-3 921158-3 921158-3 921158-3	1 1 1	25 26 23 25	0 0 0	25 25 25 25 25	100 104 92 100	5 5 5 5	ug/l ug/l ug/l ug/l
Chlorobenzene Ethylbenzene Bromoform	Matrix Matrix Matrix	921158-3 921158-3 921158-3	1 1	18 18 15	0 0 0	25 25 25	72 72 60	5 5 5	ug/l ug/l ug/l
1,1,2,2-Tetrachloroethane	Matrix	921158-3	1	17	0	25	68	5	ug/l
·									
			1	t	<u></u>		TH PADRE IS	LAND DRIVE 78408	•

The analyses, comors or interpretators contained in this report are based upon observations and material supplied by the clerit for whose subures and confidential use this report has been made. The interpretations or opinions expressed inpressent represents for best judgement of Core Laboratories. Core Laboratories, noneire, assumes no responsibility and makes no warranty or representations, express or implied, as to the productively, proper coertaines, or profubbleness of any oil, gas, coal or other memory, property, well or sand in connection with which such report a used or read upon for any reason whatsoever. This report shall not be reproduced, except in its entirely, which the written approval of Core Laboratories.

1

JOB NUMBER: 921158 0	USTONER: POLLUT	ION CONTROL	06/29/9 SERVICES		ATTN: CH	UCK WALLGRE	N	
Volatiles Matrix Spike Compour		· · ·		ALYZED: 11:42	···· ·		· · · · · · · · ·	NUMBER : 92685
		1	UPLICA	1		1		ŧ
TEST DESCRIPTION	ANALYSIS SUB-TYPE	ANALYSIS 1. D.	DILUTION	ANALYZED VALUE (A)	DUPLICATE VALUE (B)	RPD or (A-B)	DETECTION	UNITS OF MEASURE
Chloromethane Viewi chloride	Analytical Analytical	921158-3 921158-3	1	<5 <5	<5 <5	NC NC	5	ug/i ug/i
Vinyl chloride 1,1-Dichloroethen e	Analytical	921158-3	1	<5	<5	NC	5	ug/l
1,1-Dichloroethane	Analytical	921158-3	1	<5 <5	<5 <5 <5 <5	NC	5	ug/t
Chloroform Benzene	Analytical Analytical	921158-3 921158-3		5	<5	NC NC	5	ug/l ug/l
Trichloroethene	Analytical	921158-3	i	<5	<5	NC	5	ug/l
1,2-Dichloropropane	Analytical	921158-3	1	<5	<5	NC	5	ug/l
Toluene Chlorobenzene	Analytical Analytical	921158-3 921158-3		<5 <5	ৎ ৎ ৎ ৎ	NC NC	5	ug/l ug/l
Ethylbenzene	Analytical	921158-3	i	\$	<5	NC	5	ug/l
Bromoform	Analytical	921158-3	1	5 5 5	<5 <5 <5	NC	5	ug/l
1,1,2,2-Tetrachloroethane	Analytical	921158-3	1	<	<>	NC	5	ug/l
						1		
		1						
i de la construcción de la construcción de la construcción de la construcción de la construcción de la constru								
								}
							1	
								,
								1
							1	•
		1					1	
			1					
		1	1					
		1	1					1
	I	1		I	1		I	l
-						TH PADRE IS		
					(512) 28	CHRISTI, TX	78408	

The analysis, opinions or interpretations contained in this report are based upon observations and material supplied by the clerk for whose sucknews and confidential use this report has been made. The interpretations or opinions expressed represent the bast judgement of Core Laborations. Core Laborationes, however, assumes no responsibility and makes no warranty or representations, express or implied, as to the productivity, proper operations, or profusibilities of any oil, gas, coal or other minoral, property, well or send in connection with which such report is used or relead upon for any reason whatsoever. This report shall not be reproduced, except in its entirely, without the written approval of Core Laborationes.

PAGE:7

nite)

Į.

Į.

ille:

M

1

CORE LABORATORIES

QUALITY ASSURANCE FOOTER 06/29/92

Standard Methods for the Examination of Water and Wastewater, 17th Ed. APHA,AWWA,WPCF. USEPA SW-846 3rd. Edition, Test Methods for the Evaluation of Solid Waste EPA-600/4-79-020, Methods for the Analysis of Water and Wastes, March 1983 Federal Register, Friday, October 26, 1984 (40 CFR Part 136). EPA-600/2-78-054, Field and Laboratory Methods Applicable to Overburdens and Minesoils.

Quality control acceptance criteria is method dependent. GCMS tuning criteria meet EPA CLP Statement of Work OLMO1.0. All data reported on sample "as received" unless noted.

NC = Not Calculated due to value at or below detection limit.

NOTE: Data in QA report may differ from final results due to digestion and/or dilution of sample into analytical ranges.

The "TIME ANALYZED" in the QA Report refers to the start time of the analytical batch which may not reflect the actual time of each analysis. The "DATE ANALYZED" is the actual date of analysis.

1733	NORTH	PADRE	I SI	AND	DRIVE
CORPL	JS CHRI	ISTI,	TX	784	608
(512)	289-2	2673			

PAGE:8

The analyses, opinions or interpretations contained in this report are based upon observations and material supplied by the cleart for whose successe and confidencial use this report has been made. The interpretations or opinions expressed represent the best judgement of Core Laborations. Core Laborations, or profabelities of any roads in our any road or other mineral, property, well or sand in connection with which successed is used or relied used orelied used or relied used or relied used or re

Final Report

North Bexar County Water Resources Study for the Edwards Underground Water District

ŀ

[

Ì

Volume 2 ALTERNATIVE RESOURCES

September, 1993

Prepared by W. E. Simpson Company, Inc.

TABLE OF CONTENTS

ß

Volume	e 2: ALTERNATIVE RESOURCES	
I.	INTRODUCTION	L
II.	WATER DEMAND STUDY	ł
	A. Population growth	5
	C. Future demands	
III.	SURFACE WATER	1
	A. General	1 1 7 3 3 3
	B. Existing Impoundments	567777800
	C. Existing Flood Control Structures	1 2
	2. Lewis Creek 4 D. Potential Impoundments 4 1. San Geronimo Creek 4 2. Balcones Creek 4 3. Unnamed Tributary of San Geronimo Creek 4 4. Leon Creek 4 5. Chiminea Creek 4 6. Pleasant Valley Creek 4 7. Kelly Creek 4 8. Cibolo Creek 4	34456778

<u>Paqe</u>

.

<u>Paqe</u>

IV.	WASTEWATER REUSE
	 A. Fair Oaks Subdivision
v.	WATER RESOURCES AVAILABILITY
	A. Groundwater
	C. Reusable Wastewater 61
VI.	DEVELOPMENT OF ALTERNATIVE RESOURCES
	A. Groundwater
VII.	CONCLUSIONS AND RECOMMENDATIONS
VIII.	SELECTED REFERENCES
IX.	APPENDICES Appendix A: TWDB Trinity Pumpage Records for Selected Years

Appendix B: Surface Water Quality Records

(

1.

Ć

TABLES

(

page

		5
•	•	5
		9
•	•	13
	٠	15
		20
•	•	20
•		
•	•	30
_		
		•••
	•	31
		30
•	•	52
		56
	deh	e h · ·

FIGURES

Figure	1.	Location of Study Area
Figure	2.	1990 Census Tracts in the Study Area 7
Figure	3.	Historical and Future Population Counts for
-		the Study Area and Trinity Users 10
Figure	4.	Water Purveyor Service Areas in 1993 12
Figure	5.	Historical Demand on Trinity Aquifer in
-		North Bexar County
Figure	6.	Historical Demand on Trinity Aquifer in
-		North Bexar County
Figure	7.	Trinity Pumpage Based on Population 21
Figure	8.	Historical and Future Demand
Figure	9.	Drainage Basin Yield
Figure	10.	Local Surface Water Resources for End of
-		North Bexar County Volume
Figure	11.	Texas Water Commission Surface Water
-		Use Permitting Program, 1989
Figure	12.	Distant Surface Water Resources for
-		North Bexar County
Figure	13.	(unused)

Figure	14.	Transmission Plan for the Lake Boerne
		ASR System
Figure	15.	Transmission Plan for the Balcones,
-		Pleasant Valley and Kelly Creeks
		ASR Systems
Figure	16.	Transmission Plan for the Cibolo Creek
-		Conventional System 69

[

P

P

ĺ

ŕ

ſ

ſ

Í

T

I. INTRODUCTION

li i R

> The study area of north Bexar County is bounded on the west, north and east by the county line and by the down-dip limit of the Edwards Aquifer Recharge Zone (EARZ) on the south. It is located in the south central region of Texas as shown in Figure 1. The study area is located within the Balcones fault zone, a region of faulted and fractured limestone. Due to the amount of fractures and faults, most streams in the area are intermittent and flow only during and immediately after rain events. Consequently, water is supplied to the study area population almost exclusively from groundwater by the Edwards and Trinity aquifers.

> In 1990, the population of north Bexar County numbered approximately 27,900 with an average historical growth rate since 1960 of approximately 80 percent per decade. With limited water resources in the area, growing demand upon the Trinity aquifer is becoming a concern. This study, developed in response to the increasing demand, consists of two main portions. The groundwater portion of the study is addressed primarily in Volume 1 of the report. Volume 1 was prepared by William F. Guyton Associates, Inc. and provides an inventory of wells in the study area, lists well data and results of chemical and biological testing, includes pump test results

TEXAS STUDY AREA EDWARDS CO. KERR CO. HAYS CO PLATEAU EDWARDS KENDALL CO. c199 REAL CO. KERRVILLE ROCK SPRINGS OUADALUPE COMAL CO BANDERA CO. NIVER BOERNE FAIR O OAKS BULVERDE LEAKEY O BANDERA BALCOWE KINNEY CO. UVALDE CO. MEDINA CO. STUDY AREA SAN 4 ANTONIO BEXAR CO BALCOM 120 N 7 HONDO FAU O BRACKETTVILLE E S GULF C O ŚТА A 10 20 30 5 SCALE IN MILES

LOCATION OF STUDY AREA

Figure .

and presents mapping of potentiometric water surfaces and makes recommendations for further study and conservation measures.

The remaining portion of the study, prepared by W. E. Simpson Company, Inc. and found in Volume 2, compares the growing demand for water with the limited groundwater supply. Volume 2 estimates future demands, establishes corresponding target supply quantities and investigates alternative water resources and their abilities to provide target supply quantities. Water quantity, quality, and the cost of resource development are considered in the evaluation. Several alternative resources are ranked accordingly and recommendations are made for further study.

The reader should note the preliminary nature of the study. All figures, except for actual test results, are estimates for helping to determine future courses of study and should not be considered as actual designs, costs, or quantities.

II. WATER DEMAND STUDY

As population increases and growth occurs within the study area, the demand for water will increase. The study presents an investigation of past population and water use trends and provides a correlation that can be used for estimating future water demand.

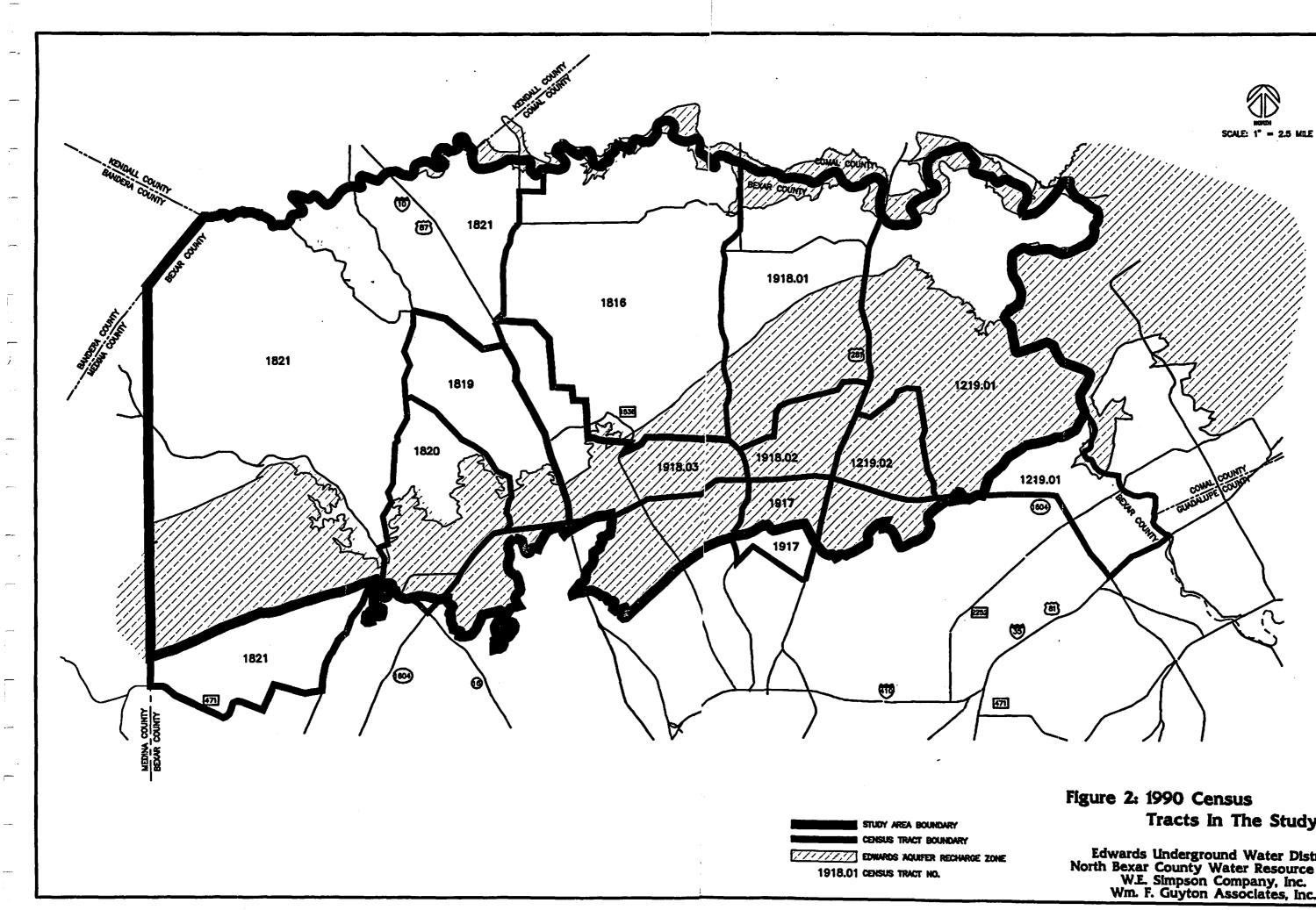
A. Population Growth

Three population groups are considered in the study. First, the population of Bexar County is discussed to establish a benchmark from which to begin the analysis. The total population of the study area and the population of the study area which uses Trinity aquifer water are shown to be related to the county population. Future projections of the county population are used to estimate future projections for the total population of the study area and for the population of the study area which uses water from the Trinity aquifer.

1. <u>Bexar County Population</u>. The historical population of Bexar County is determined from the U.S. Census Bureau for the years 1960, 1970, 1980 and 1990 and is listed in Table 1.

TABLE 1: HISTORICAL AND PROJECTED POPULATION OF BEXAR COUNTY					
	BEXAR COUNTY POPULATION				
	PROJECTIONS				
YEAR	HISTORICAL	LOW	HIGH		
1960	687,151				
1970	830,460				
1980	988,788				
1990	1,185,394				
2000		1,390,886	1,422,629		
2010		1,587,516	1,705,074		
2020		1,753,971	2,034,080		

N


1990 -----

(

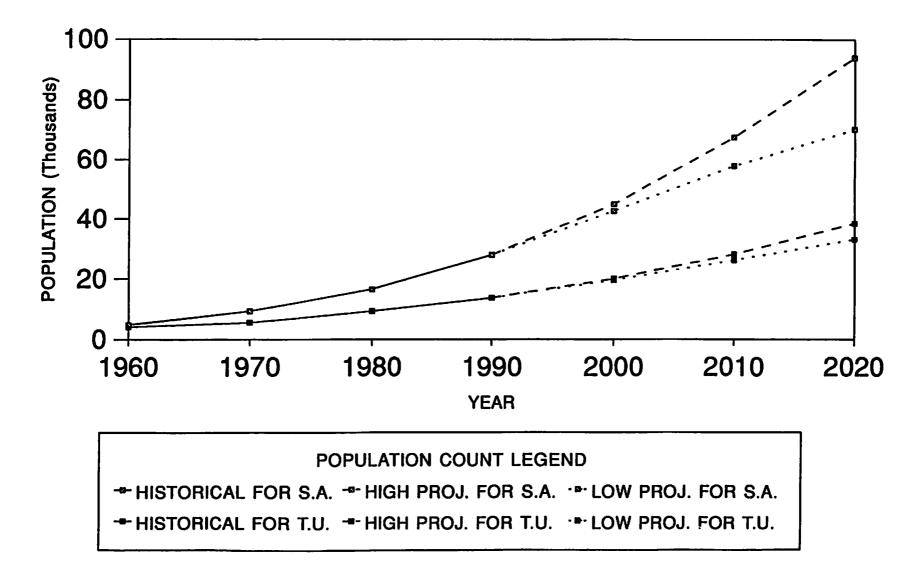
Future population projections are available for the county from a number of sources, however, most of them do not project to the year 2020, the end of the investigation period for this study. Two projections which qualify are those of the Texas Water Development Board (TWDB) and Texas A&M College of Agriculture and Life Sciences Department of Rural Sociology (TX A&M). Both projections are available for more than one scenario. Since the various projections indicate differing rates of future growth, two projections are used to determine a range of expected population increases. The TWDB's "high" scenario projection is used to establish the upper limit for the study. TX A&M's projection, which assumes a future migration rate equal to that of the 1980's, is used to establish the lower limit for the study. Values of the population projections are also listed in Table 1.

R,

2. <u>Study Area Population</u>. The historical population of the study area is determined from the U.S. Census Bureau for the years 1960, 1970, 1980 and 1990. The census tracts used by the Census Bureau are different for each decade and none of them correspond exactly with the southern boundary of the study area. Figure 2 shows the census tracts considered in determining the population for the study area in 1990. It demonstrates how small regions of the study area are neglected in population estimates, such as the regions adjacent to tracts 1219.02, 1819, 1820 and 1918.03. It also demonstrates the need to reduce census tract counts in order to represent only the population within the study area. For example, a

Tracts In The Study Area

Edwards Underground Water District North Bexar County Water Resource Study W.E. Simpson Company, Inc. Wm. F. Guyton Associates, Inc.


certain amount of the population in tracts 1819 and 1219.01 live outside of the study area. Estimates of these amounts are subtracted from the count for the study area. However, the population in small portions of tracts 1820 and 1917 which extend outside of the study area were included in the study area population count. The small population inhabiting tract 1820 outside of the study area is estimated to be insignificant. The population inhabiting tract 1917 outside the study area is expected to be significant, but is difficult to estimate. Also, the southern boundary of tract 1917 closely follows the southern service area boundary for Hill Country water works. Keeping this service area population entirely inside or outside of the study area boundary is important later for calculating the amount of the study area population which uses Trinity water. Therefore, the population in this region is included in the count. The resulting historical study area population estimates are listed in Table 2.

Comparison of county growth patterns and study area growth patterns indicates that the ratio of the percent rate of study area growth to the percent rate of county growth has decreased linearly since 1960. Based on this relationship, future study area population figures are projected and also listed in Table 2. Figure 3 shows a plot of the historical population and future population projections for the study area.

TABLE 2: HISTORICAL AND PROJECTED POPULATION OF NORTH BEXAR COUNTY						
NORTH BEXAR COUNTY POPULATION						
	PROJECTIONS					
YEAR HISTORICAL ESTIMATES		LOW	HIGH			
1960	4,766					
1970	9,233					
1980	16,480					
1990	27,927					
2000		42,616	44,885			
2010		57,880	67,463			
2020		70,220	93,931			

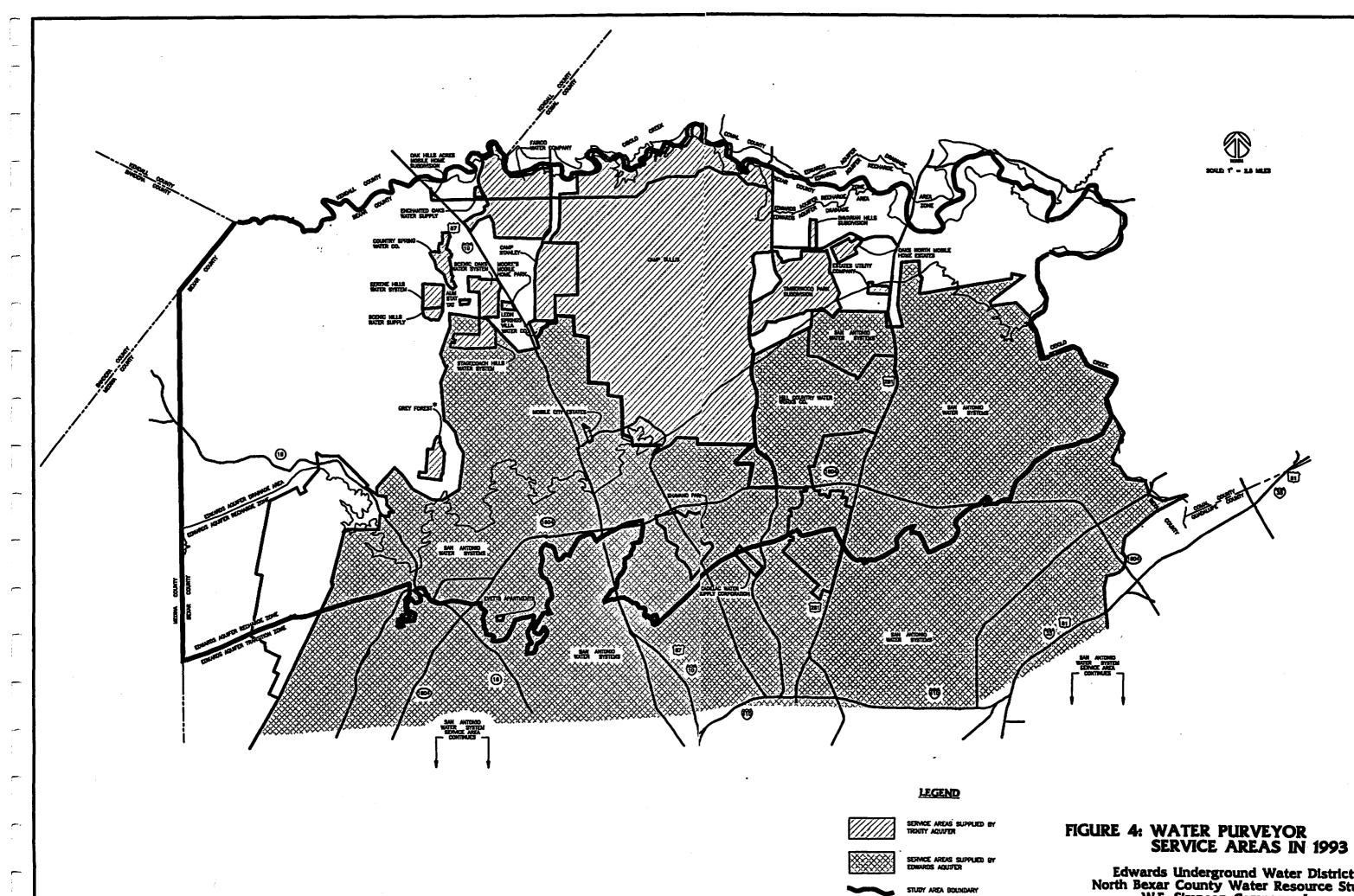

.

FIGURE 3: HISTORICAL AND FUTURE POPULATION COUNTS FOR THE STUDY AREA AND TRINITY USERS

ABBREVIATIONS: S.A. FOR STUDY AREA, T.U. FOR TRINITY USERS AND PROJ. FOR PROJECTION.

Trinity-Using Population. The historical population 3. within the study area which uses water from the Trinity aguifer, or the historical "Trinity-using population," is estimated by two methods. One method involves estimating the population within the study area which uses Edwards Aquifer water and subtracting it from the total study area population. The Edwards-using population is estimated from reports issued by the San Antonio Water System and records kept by the TWDB and the Texas Water Commission (TWC). The second method involves dividing the study area into two effective aquifer "service areas", Edwards and Trinity, and estimating the population falling into the Trinity "service area". Results of the two methods were cross checked and corrected as needed in order provide as accurate an estimate as possible. Figure 4 shows the gross service areas of some of the water purveyors in the study area which were considered in the analysis. The estimates of the historical Trinity-using population of the study area are listed in Table 3.

Edwards Underground Water District North Bexar County Water Resource Study W.E. Simpson Company, Inc. Wm. F. Guyton Associates, Inc.

TABLE 3: HISTORICAL AND PROJECTED POPULATION OF NORTH BEXAR COUNTY WHICH USES TRINITY WATER					
	TRINITY-USING POPULATION				
		PROJE	ECTIONS		
YEAR	HISTORICAL ESTIMATES	LOW	HIGH		
1960	4,049				
1970	5,520				
1980	9,268				
1990	1990 13,643				
2000	2000 19,526 19,972				
2010	26,146 28,082				
2020		33,152	38,446		

Comparison of the Trinity-using population growth pattern with the county growth pattern shows a different relationship than the one between study area growth pattern and the county growth pattern. The difference can be expected since the study area has a fixed boundary and the Trinity aquifer service area has a moving boundary. The shape and size of the Trinity aquifer service area has changed substantially through the years with the expansion of Edwards-using water purveyors such as the San Antonio Water System and Hill Country Water Works. Consequently, it is found that, starting in 1970, the Trinity-using population count can be expressed as a percentage of the county population, a percentage which increases linearly through time. Future Trinity-using populations are estimated by applying this relationship to the county projections and are listed in Table 3. The relationship is applied to both county projections in order to project upper and lower limits. Figure 4 shows a plot of the historical Trinity-using population estimates and future Trinity-using population projections.

B. Water Use Patterns

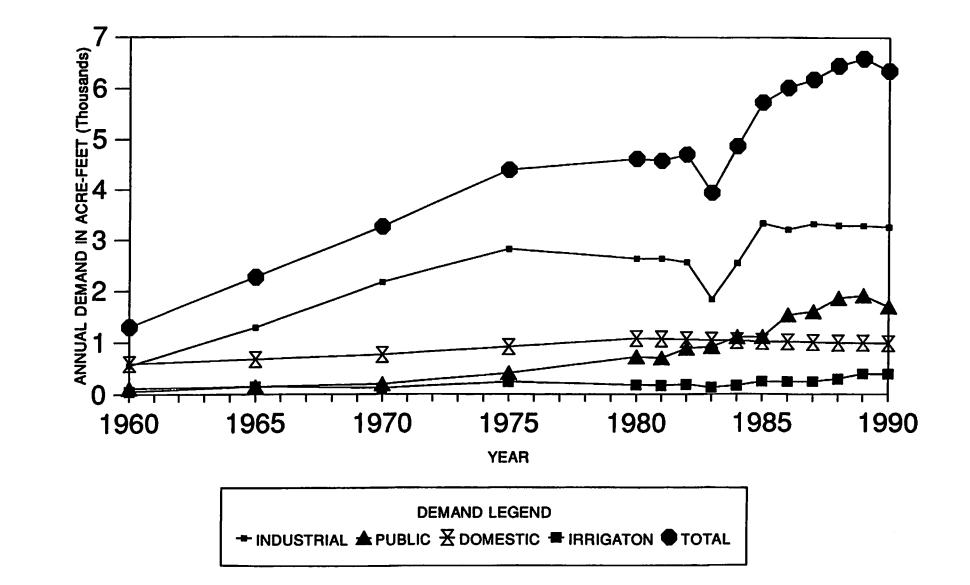
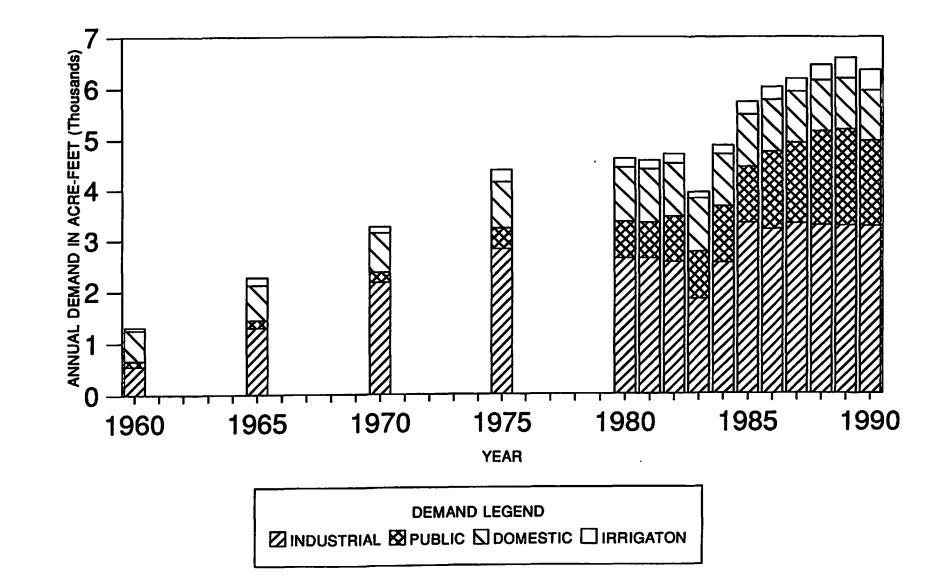

Trinity aquifer water is used within the study area for four general purposes: public supply, domestic supply, irrigation and industrial use. In order to identify consumption patterns, historical consumptions are estimated for each category over a number of years. Each type of use is discussed in order of decreasing magnitude, as found in the later years of the historical period. Historical water use estimates are tabulated in Table 4 and shown graphically in Figures 5 and 6. Figure 5 uses a line graph to show how total consumption and separate categories of consumption have varied through time. Figure 5 is useful for identifying historical trends in individual use categories. Figure 6 uses stacked bar graphs to show, for each year studied, the cumulative effect of the four types of consumption.

	TABLE 4: ESTIMATES OF HISTORICAL DEMAND ON THE TRINITY AQUIFER IN NORTH BEXAR COUNTY						
	ANNUAL DEMAND (ACRE-FEET)						
YEAR	INDUSTRIAL	PUBLIC	DOMESTIC	IRRIGATION	TOTAL		
1960	550	110	590	50	1300		
1965	1290	150	680	150	2270		
1970	2170	200	770	120	3260		
1975	2820	410	920	240	4390		
1980	2630	720	1080	180	4610		
1981	2630	700	1070	170	4570		
1982	2560	890	1060	190	4700		
1983	1840	920	1050	130	3940		
1984	2550	1110	1040	170	4870		
1985	3330	1120	1030	250	5730		
1986	3210	1540	1020	250	6020		
1987	3320	1600	1010	250	6180		
1988	3290	1860	1000	300	6450		
1989	3280	1910	1000	400	6590		
1990	3260	1700	990	400	6350		


15

Ÿ.

FIGURE 5: HISTORICAL DEMAND ON TRINITY AQUIFER IN NORTH BEXAR COUNTY

FIGURE 6: HISTORICAL DEMAND ON TRINITY AQUIFER IN NORTH BEXAR COUNTY

Industrial use is defined as the use of water for manufacturing or processing in industry. William F. Guyton Associates, Inc. identifies three major industrial users within the study area and developed pumpage estimates from U.S. Geological well surveys, site visits and interviews. The combined annual use estimates for Barrett Industries, Redland Stone and Redland Worth show a general increase from 1960 to 1990, but with several irregularities in the trend.

Public supply is defined, for the purposes of the study, as water distributed through a system which has at least 25 separate connections or water that is distributed at a public place such as a park, restaurant or school. The historical annual consumption of publicly supplied water is estimated through information obtained from the files of the TWC and the TWDB concerning pumpage records, service populations and system capacities. In some cases, system owners were contacted and interviewed. A review of the annual estimates indicates that consumption through public supply has generally increased from 1960 to 1990.

Domestic supply is defined as water obtained from small private well systems. The historical annual domestic consumption is estimated by subtracting the population estimate of publicly supplied Trinity users from the total Trinity-using population count and multiplying the difference by 130 gallons per capita per day (gpcd). A review of the annual estimates indicates that domestic use nearly doubled

from 1960 through 1980 and then gradually decreased through 1990.

Irrigation occurs in the study area with the watering of golf courses and cemeteries. Annual irrigation use is estimated by reviewing pumpage records from the TWDB and from information obtained by William F. Guyton, Associates on pump tests, recorded pumpage, and system capacities.

C. Future Demands

Trinity aquifer demand can be related to the magnitude of the Trinity-using population. Regression analysis indicates that, for the years where population and demand data are both readily available, the relationship can be approximated by a logarithmic equation

D = 8965 * Log(P) - 30754

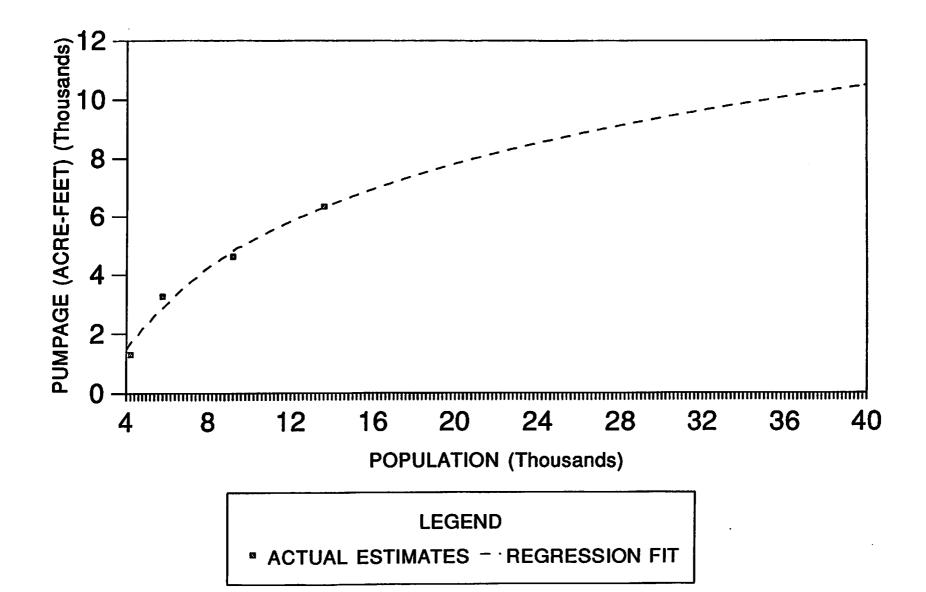
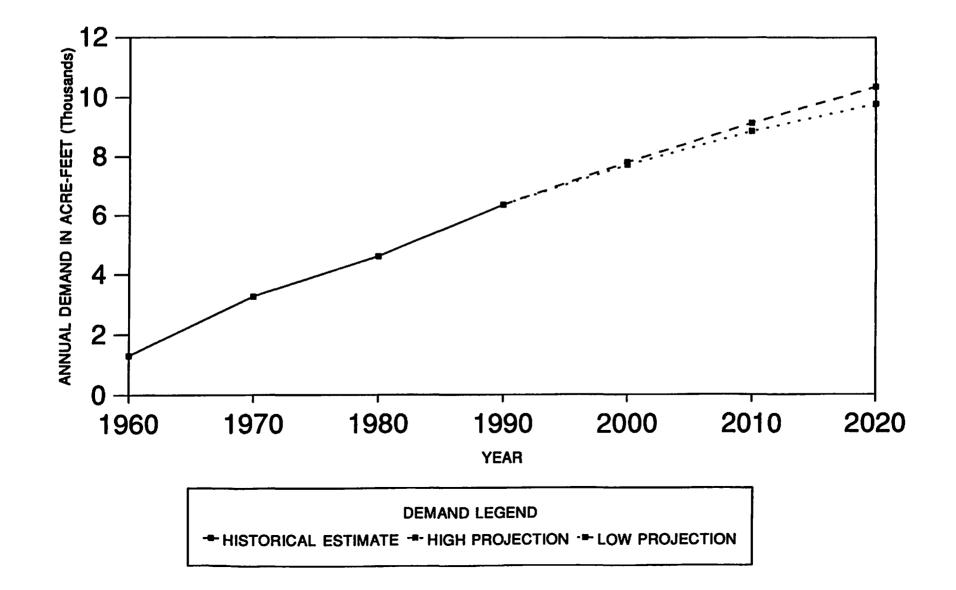

where D is the annual demand on the Trinity aquifer in acrefeet and P is the population count of Trinity users. Table 5 provides a comparison between estimated historical demand and historical demand calculated by the regression model. Figure 7 shows the same comparison graphically and also shows the regression model extrapolated to larger populations. Based on the larger deviations at the low end of the curve and the negative demand values predicted for small populations, the curve is recommended only for approximating future demands and not for studying past historical conditions.

TABLE 5: COMPARISON BETWEEN HISTORICAL ESTIMATES AND REGRESSION MODEL APPROXIMATIONS OF THE DEMAND ON THE TRINITY AQUIFER IN NORTH BEXAR COUNTY								
DEMAND ON TRINITY (ACRE-FEET)								
YEAR	REGRESSION APPROXIMATION							
1960	1,300	1,590						
1970	3,260	2,790						
1980	4,610	4,810						
1990	6,350	6,320						

Future demand can be estimated with the extrapolated regression curve based upon projected population figures. Table 6 shows lower and upper limit population projections for a number of years and the corresponding Trinity water demands estimated with the regression curve. Figure 8 graphically shows the variation in total demand on the Trinity aquifer within the study area through time.

FIGURE 7: TRINITY PUMPAGE BASED ON POPULATION


TABLE 6: PROJECTED COUNTS OF THE TRINITY USING POPULATION IN NORTH BEXAR COUNTY AND THE RESULTING APPROXIMATED DEMANDS ON THE TRINITY AQUIFER									
	PROJECTED FUTURE TRINITY POPULATION DEMAND (ACRE-FEET)								
YEAR	LOW HIGH		LOW	HIGH					
2000	19,526	19,972	7,710	7,800					
2010	26,146	28,082	8,850	9,130					
2020	33,152	38,446	9,770	10,350					

(Kara) ||

() | |

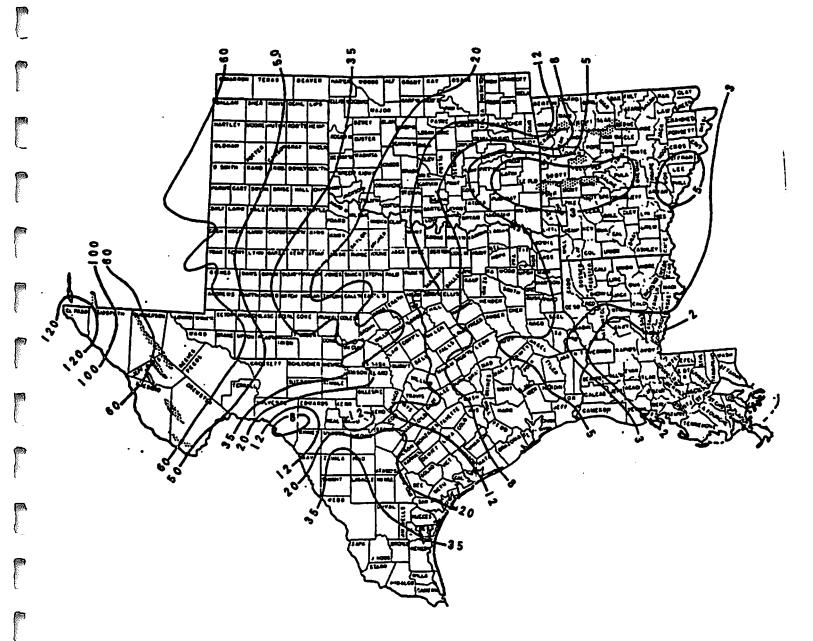
ſ

FIGURE 8: HISTORICAL AND FUTURE DEMAND ON THE TRINITY AQUIFER IN NORTH BEXAR COUNTY

III. SURFACE WATER

A. Background

In studying the role of surface water as an alternative resource for north Bexar County, three types of sources are considered: existing impoundments with permanent storage, existing flood control structures with temporary storage, and potential impoundment sites. Since the effective potable yield of each source type is dependant upon watershed yield, water quality, and existing water use appropriations, each source is considered in terms of each of the three concerns.


1. <u>Watershed Yield.</u> Two methods are used to estimate available water for existing or potential dam sites. The first method is a rough approximation developed by the Soil Conservation Service and is used for smaller watersheds in the study. The second method is used for the larger watersheds of the study and relies upon information developed by the TWC. In either case, only sources which can supply a minimum of 150 acre-feet annually are considered as potential supplies.

a. Yield of Small Watersheds. Watershed yield is dependent upon many factors such as size of drainage area, runoff characteristics, storm characteristics and annual rainfall. The study estimates watershed yields on a preliminary basis for smaller surface sources with a simplified procedure developed by the Soil Conservation Service (SCS) and presented in the <u>Engineering Field Manual</u> <u>for Conservation Practices</u> (EFM). Exhibit 11-1 of Chapter 11

(Figure 9 in this report) indicates that for the study area, approximately twenty acres of "...watershed [are] required for each acre-foot of capacity in a...reservoir to maintain normal pool level..." For the purposes of the study, maintainable reservoir capacity is taken as a preliminary estimate of a watershed's annual safe yield and the figure is calculated as 0.050 acre-feet of safe yield per acre of watershed.

A comparison of the modified SCS value with the historical drought records suggests that the value is probably a good preliminary estimate for the safe yield of small watersheds within the study area. A draft report by the TWDB entitled <u>Continuing Water Resources Planning and Development</u> <u>for Texas</u> discusses average runoff and low flow for the San Antonio River basin. The report indicates that under the low flow conditions of 1950 through 1956 and of 1962 through 1964, the average annual yields in the San Antonio River Basin were 0.075 and 0.078 acre-feet per acre of watershed, respectively. The report also indicates that the lowest annual discharge occurred in 1956 at 0.036 acre-feet per acre of watershed.

Although the safe yield used in the study is higher than the lowest annual discharge of the river, it is considered acceptable because each of the surface sources considered involves at least one reservoir. Reservoirs serve to increase the safe yield of a stream over that of the natural condition

A general guide for use in estimating the approximate size of drainage area required for a desired storage capacity in either excavated or impounding reservoirs. The numbers on the chart show the number of acres of drainage area required for 1 acre foot of water impounded. Based on a figure found in the S.C.S. Engineering Field Manual.

.

NOTE: Mountainous areas have been crosshatched. The numbers may not apply to these areas since rainfall in them is very spotty and varies sharply. through the introduction of storage. The increased safe yield is often referred to as the firm yield of the reservoir. The exact increase in safe yield depends upon the magnitude of various losses, the size of the reservoir and the sequencing of drought periods and wet periods. Consequently, the safe yield figure used for the study is approximate and may be considered as a conservative or minimum estimate of a reservoir's firm yield.

The SCS EFM suggests that areas to the north of the study area provide higher safe yields. A value of 0.071 acre-feet of safe yield per acre of watershed is applied in the study to the watershed for a potential dam site on Cibolo Creek in Kendall County.

Near the study area, average runoff from a watershed appears to be approximately 6.33 times greater than its safe yield. Records from the U.S. Geological Survey's stream gage on Cibolo Creek south of Boerne show an average annual runoff of 0.45 acre-feet per acre for the record period of 1963 through 1991.

b. Yield of Large Watersheds. The yields of larger water watersheds considered in the study are not directly estimated because the existence of water rights impacts the effective yield significantly. Instead, water rights allocation amounts are compared to actual water usage. Allocation amounts are determined from permits or certificates of adjudication and usage reports are obtained from the TWC.

In cases where allocations are much greater than actual usage, the impoundment is considered as a potential source for supplying the study area. In such cases, the water rights owner may be willing to negotiate a Water Sale Agreement with users within the study area, or perhaps the state may consider adjudication or readjudication of water rights. The viability of both courses of action is not addressed in this study and requires further investigation.

k

Ł

2. Water Quality. Although a watershed may yield an adequate quantity of water, the amount will be of little benefit if it is of poor quality. The study considers water quality information for eight creek locations (two of them being on the same creek), five locations on Medina Lake and four locations on Canyon Lake. Although the original scope and budget of the study did not include the collection and testing of samples, limited surface water quality information was available from public agencies. Consequently, field samples were collected from five creeks and tested to augment available data. It should be noted that good samples were difficult to obtain from pleasant Valley Creek and Salado Creek because, at the points of interest, the creeks are ephemeral. Samples taken from the two creeks were from quiescent, turbid pools which may have been of a lesser quality than that of the free flowing condition. The tests performed include mineralogical, orthophosphate, ammonia nitrogen, biochemical oxygen demand and fecal coliform

analyses. Public agency test results were obtained from the TWC for Cibolo Creek, Leon Creek, Canyon Lake and Medina Lake and from the San Antonio Water System (SAWS) for another location along Leon Creek. Figure 10, found at the end of Volume 2, shows the locations from which the creek samples were taken and where the creek monitoring points are located.

Tables 7, 8 and 9 show the results of the analyses for each creek and lake location. One out of the eight sites shows pH values slightly lower than the recommended secondary constituent level (RSCL) minimum of 7.0. Two of the sites show iron levels which exceed the RSCL maximum of 0.3 mg/L. Three sites have hard water and five of the sites exhibit fecal coliform levels over the TWC's typical target value for streams of 200 colonies per 100 mL. Water from two of the sites might require coagulation or reverse osmosis to reduce elevated iron concentrations. However, the samples which

TABLE 7: WATER QUALITY TEST RESULTS FOR STREAMS

	W. Z. SINGSON CONDANY AMORES T.W.C. AMORES				emples	S.A.W.S. SM013	DRIMEN URTER STRIEDRE (4)		
Sample Location Number	1	2	د	4	5	6	7		
Location	San Geronimo Creek	Balcones Creek	Salado Creek	Levis Creek	Pleasant Valley	Cibolo Creek	Leon Creek	Leon Creek (I-10)	
Collection Date	5/24/93	5/24/93	5/24/93	5/25/93	5/24/93	(1)	(2)	(3)	
		8.3	7.9	8.0	0.1	7.0-9.4	7.5-8.0	6.6-6.7	>7.0 S
BCD, (mg/L)	1	<1	2	4	2			2-3	
788 (mg/L)	16	2	22	12	13		•••••	41-29	
TDS (mg/L)	280	276	248	320	92			124-136	<1000
Ammonia Hitrogen (mg/L)	<0.10	<0.10	0.67	<0.10	<0.10	0.02-1.40	0.01-0.06		
Orthophosphate (mg/L)	0.05	0.03	0.68	0.07	0.22	0.28-2.92	0.01-0.03		•••••
Specific Conductance (µmhos)	455	480	230	560	128	330- 750	500-850	149-269	
Iron (mg/L)	<0.01	<0.01	6.73	0.27	1.27				<0.3
Dissolved Iran (1.2 µm filter) (mg/L)			5.82		0.87				
Dissolved Iron (0.45 µm filter)(mg/L)			1.08						
Calcium (mg/L)	62	72	40	95	24			32-52	
Magnesium (mg/l)	28	12	1	9	0			2-3	
Hardness as CaCO, (mg/L)	228	228	106	272	60			66-106	
Sodium (mg/L)	8	5	۹.	7	<1			3-12	
Potassium (mg/L)							*****	3-11	
Manganese (mg/L)	<0.01	<0.01	<0.07	<0.01	0.01				<0.(
Total Alkalinity (mg/L)	186	228	114	284	60			<16-44	
ECO, Alkalinity (mg/L)	227	276	139	351	73				
Sulfate (mg/L)	37	21	34	13	9	18-78	44-158	21-72	<30
Chloride_(mg/L)	13	10	1	11	1	16-69	17-23	3-6	<30
Fluoride (mg/L)	0.51	0.43	0.24	0.32	0.36			<0.50	<2
Nitrate as Nitrogen (mg/L)	0.14	<0.10	0.48	0.08	0.21	0.0-	0.01-1.67	<0.1-1.3	<10
Pecal Coliform (colonies/100 mL)	380	130	420	200	4000	0-990	4-30	3,600- 15,000	(5
Dissolved C ₁ (mg/L)						6.4-13.0	10.6-12.5	6.5-10.2	

The data are from 12 samples taken during the period 01/12/88 through 11/12/91. The data are from 3 samples taken during the period of 05/09/90 through 01/15/92. The data are from 2 samples taken on 02/10/93 and 03/12/93. From the Texas Administrative Code, Title 31, Chapter 250, 1592-1593 Supplement. "N" indicates maximum constituent level for drinking water and "3" indicates recommended secondary constituent level for drinking water. Standards are based on population served by system and number of positive total coliform tests per month. (1) (2) (3) (4)

(5)

.

TABLE 8: HERBICIDE AND PESTICIDE TEST RESULTS FOR SAMPLE LOCATION NUMBER 8 ON LEON CREEK AT IH-10 WEST

	CONCENTRATION IN MICROGRAMS/LITER				
	COLLECT	ION DATE	MAXIMUM		
CONTAMINANT	02/10/93 03/12/9		CONTAMINANT LEVEL (1)		
Lindane			0.2		
Alpha- hexachlorocyclohexane	<.02	.05	(2)		
Gamma- hexachlorocyclohexane	<.02	.05	(2)		
Beta- hexachlorocyclohexane	<.02	.10	(2)		
Delta- hexachlorocyclohexane	<.02	.05	(2)		
Chlordane	<.02	.05	2.0		
Heptachlor	<.02	.05	0.4		
Heptachlor Epoxide	<.02	.05	0.2		
Aldrin	<.02	.05	(3)		
Endosulfan I	<.02	.05	(2)		
Endosulfan II	<.02	.05	(2)		
Endosulfan Sulfate	<.02	.05	(2)		
DDD	<.02	.05	(2)		
DDE	<.02	.05	(2)		
DDT	<.02	.05	(2)		
Endrin	<.02	.05	2.0		
Endrin Aldehyde	<.02	.05	(2)		
Dieldrin	<.02	.05	(3)		
Toxaphene	<.20	. 50	3.0		
Methoxychlor	<.08	.20	40.0		

From the Texas Water Commission's Drinking Water Standards - Phases II & V, (1) December 3, 1993.

Unregulated and unmonitored.

P

Į

(2) (3) Unregulated, but currently being monitored.

Location	CANYON LAKE	MEDINA LAKE	DRINKING WATER STANDARDS
Collection Date	(1)	(2)	(3)
рн (\$.V.)	7.3-8.4	7.4-8.48	>7.0 \$
BCD (mg/L)			
TSS (Rg/L)		237-289	
TDS (mg/L)	3-51	3-57	<1000 8
Ammonia Nitrogen (mg/L)	.0155	.01-18	
Orthophosphate (mg/L)	.01024	.01036	
Specific Conductance (µahos)	361-495	385-518	
Iron (mg/L)			0.3 5
Dissolved Iron (1.2 µm filter) (mg/L)			
Dissolved Iron (0.45 µm filtor) (mg/L)			
Calcium (mg/L)		***	
Nagnesium (mg/L)			
Hardness as CaCO, (mg/L)			
Sodium (mg/L)			
Potassium (mg/L)			
Manganese (mg/L)			<0.5 \$
Total Alkalinity (mg/L)	122-200	100-168	
HCO, Alkalinity (mg/L)			***
Sulfate (mg/L)	12-27	44-64	<300 5
Chloride (mg/L)	9-19	8-16	<300 3
Pluoride (mg/L)			<2 5
Nitrate as Nitrogen (mg/L)	.0168	.0123	<10 N
Fecal Coliform (colonies/100 nL)	2-11	1-10	(4)
Dissolved C, (Eg/L)	0-10.4	0-8.6	

Ĭ.

1005

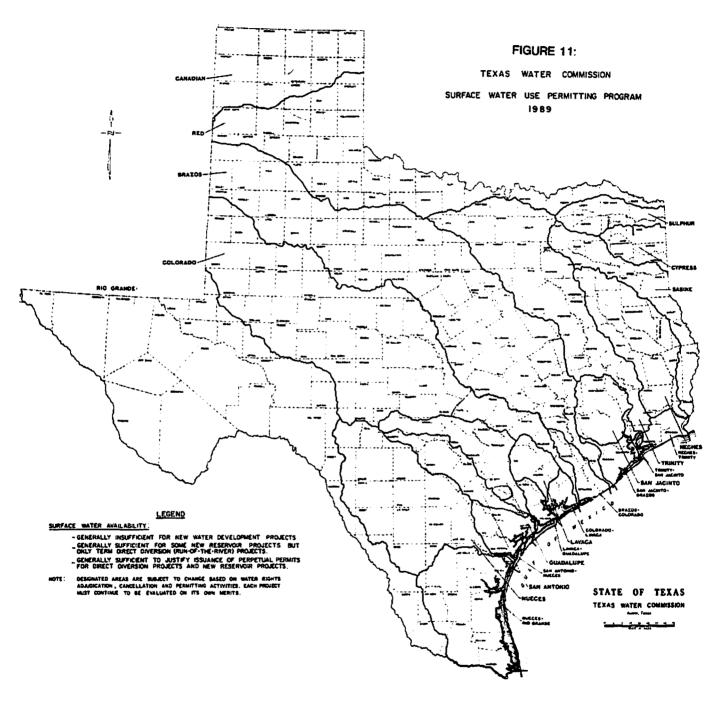
(19) f

TABLE 9: WATER QUALITY TEST RESULTS FOR CANYON LAKE AND MEDINA LAKE OBTAINED FROM TEXAS WATER COMMISSION

(1) (2) (3)

The data are from 3 samples taken on 03/09/00, 00/01/09 4 00/20/90. The data are from 4 samples taken on 00/18/00, 03/02/09, 00/03/09 4 00/13/90. From the Texas Administrative Code, Title 31, Chapter 230, 1392-1393 Supplement. "N" indicates maximum constituent level and "S" indicates recommended secondary constituent level. Standards are based on population served by system and number of positive total colliform tests per month.

(4)


suggest so are suspected of not being representative since, as mentioned above, they were obtained from turbid pools a number of hours after a rain event. Iron concentrations in the pools may have been much higher than that of the typical runoff or reservoir sample. The test results generally show that the water is of good quality and that it does not require unusual considerations for treatment.

3. <u>Water Rights.</u> Although the yield of a watershed may be high and the water quality may be excellent, the water may not be available for use. The rights to the water may be owned by downstream users or an excessive amount of upstream rights may make a stream's discharge unreliable. The study uses two methods for determining on a preliminary basis whether unappropriated water is available at potential impoundment sites and at sites where flood control dams might be converted to permanent storage structures.

a. Permitting Program Map. The first method involves the use of Figure 11 which shows a 1989 map developed by the TWC entitled "TWC Surface Use Permitting Program, 1989" (SUPP). The map delineates three types of regions in Texas: where water availability is generally insufficient for new water development projects, where moderate amounts of water are generally available on a term basis, and where water availability is generally sufficient for new water projects on a perpetual basis.

Ì.

Figure 11 shows that the study area falls in two regions. The eastern portion of the study area is shown to generally have sufficient amounts of unappropriated water for new water projects. The western portion of the study area, which is

٤.,

Ę,

M

Ľ

665

(indi

Ļ

1

Ś

within the Applewhite Reservoir and Leon Creek Diversion watersheds, is shown to generally have only moderate amounts of water available on a term basis. Although the future of the Applewhite Reservoir and the Leon Creek Diversion Dam is unknown, the water rights for the projects are still intact under appropriation permit No. 3914. Term lengths of water rights for new projects in the western portion of the study area may be related to the viability and/or construction schedule of the Applewhite Reservoir and Leon Diversion projects.

Ľ

Locations outside of the study area, immediately to the north and to the west, are also considered as potential impoundment sites. Figure 11 shows that in Medina County, just west of the study area, moderate amounts of water are available on a term basis. (The area is located in the Applewhite watershed.) In Bandera and Kendall Counties, just northwest of the study area, generally there is an insufficient amount of water available for new water projects. Immediately north of the study area, in Kendall and Comal Counties, the surface water availability is generally sufficient to allow new water projects with perpetual permits.

b. The 1983 Revised Interim Report. The <u>Revised</u> <u>Interim Report of Water Availability in the San Antonio River</u> <u>Basin, Texas</u> (RIRWA) (Texas Department of Water Resources, March 1983) is used in the study to quantify unappropriated (available) surface water on a preliminary basis and to confirm some of the indications of Figure 11. The report estimates annual amounts of available unappropriated water at various points within the San Antonio River Basin based upon the difference between historical runoff and appropriation

quantities for the period 1940 through 1979. In order to update the appropriation data, listings of water allocation permit additions and cancellations since 1979 were obtained from the TWC. Net changes in appropriations are added or subtracted from the amounts of unappropriated water listed in the 1983 report. However, historical runoff data are not updated. High and low values of available unappropriated water are estimated based upon the runoff extremes which occurred during the original RIRWA study period of 1940 through 1979.

B. Existing Impoundments

M

R

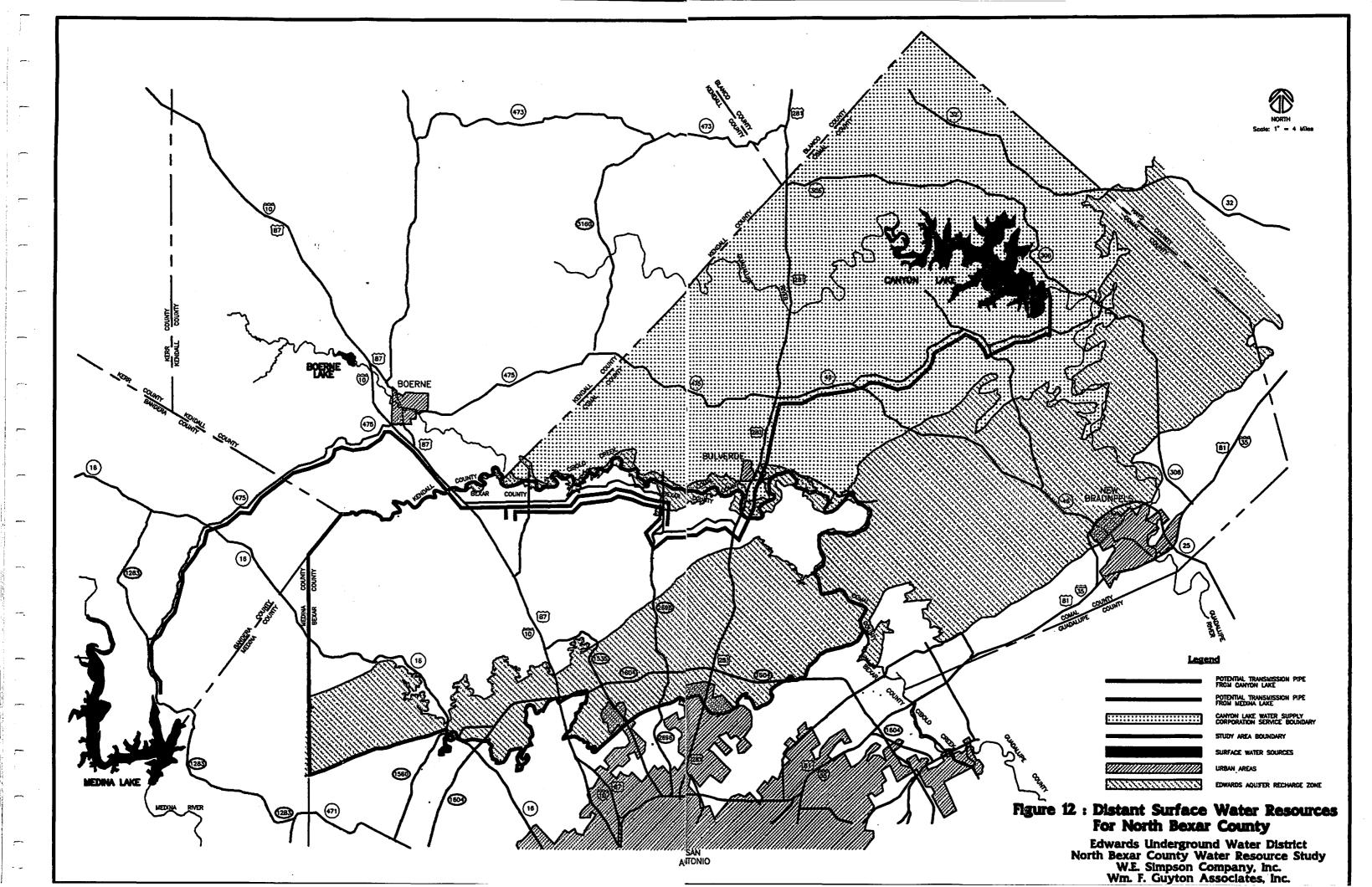
Existing impoundments are considered in the study area of north Bexar County and in nearby portions of adjoining counties. The impoundments in the study area are identified through a computer search performed by the TWC. The impoundments located outside of the study area are identified through common knowledge and the use of U.S.G.S. topographic sheets.

1. Existing Impoundments in the Study Area. Many impoundments currently exist in north Bexar County for irrigation and recreation purposes. Most of the impoundments are very small and do not involve the use of water rights. A computer search performed by the TWC Information Resources Department indicates that water rights are owned at only three different locations within the study area. None of the rights are municipal in nature. Figure 10, found at the end of Volume 2, shows the location of the three sites within the study area that utilize water rights.

a. Lorence Creek Tributary. At Site "a", the Midway Development Company owns nonconsumptive recreational water rights on a tributary of Lorence Creek (which is a tributary of Salado Creek). The facilities are located immediately north of Loop 1604, across from the City of Hollywood Park. The drainage area is only approximately 250 acres in size and is expected to safely yield an insignificant amount of water in regard to the purposes of the study.

b. Balcones Creek. At Site "b", Margaret B. Harper, et al, own nonconsumptive recreational water rights for impounding 10 acre-feet of water on Balcones Creek approximately 900 feet upstream of the bridge for Boerne Stage Road. Although the contributing watershed measures approximately 10,000 acres, the structure and impoundment capacity are so small that they would not be worth modifying for public drinking water purposes. The site is also not appropriate for a much larger structure.

c. Los Reyes Creek Tributary. At Site "c", the San Antonio Ranch, Ltd., et al, own irrigation water rights on a tributary of Los Reyes Creek. The site is located approximately 10,000 feet upstream from the center of Helotes. Although the owner is permitted to divert 100 acre-feet annually, and the reservoir capacity is reported to be 152 acre-feet, the contributing watershed measures only approximately 1200 acres and is estimated to safely yield only about 60 acre-feet annually, less than the minimum of 150 acre-feet annually. In addition, the reservoir is reported to not hold water.


2. <u>Existing Impoundments Outside of the Study Area.</u> Three significant impoundments are identified outside of north

P

Bexar County: Lake Boerne in Kendall County, Canyon Lake in Comal County, and Medina Lake in Bandera and Medina Counties. Their locations can be found on Figure 12.

a. Lake Boerne. The City of Boerne owns water rights at Lake Boerne, northwest of the city. Under certificate of adjudication no. 19-1143, the City of Boerne is permitted to divert and to use up to a total of 833 acre-feet annually for municipal and domestic purposes from an impoundment with a capacity of 4,046 acre-feet. The watershed which supplies the impoundment measures approximately 12,550 acres and is estimated to safely yield 895 acre-feet annually. Therefore, most of the safe yield from the upper Cibolo watershed is owned by the City of Boerne. The City's reported usage for 1992 was approximately 520 acre-feet, leaving a small allocation surplus of about 313 acre-feet for that year.

Figure 11 indicates that Lake Boerne falls just within the zone where water is expected to be available on a perpetual permit basis. The RIRWA indicates that during its study period of 1940 through 1979, there was commonly insufficient water to meet the requirements of all permitted allocations upstream of Selma, approximately in the Boerne area. However, the records of the TWC show that water rights for a net of approximately 23,260 acre-feet have been canceled upstream of Selma since 1979 and water rights for an additional net of approximately only 1,070 acre-feet have been allocated downstream of Selma. Although, additional water rights may now be available at Lake Boerne, they would be for low safe yield quantities. A formal inquiry of the TWC is required to determine exactly how much unallocated water is available at Lake Boerne.

Average runoff at lake Boerne is estimated to be 5,600 acre-feet per year.

Assuming that Lake Boerne's water quality can be represented by the sample taken at location No. 6 as shown on Figure 10, the quality appears to be good, but with some occurrences of high counts of fecal coliform.

b. Canyon Lake. The Guadalupe-Blanco River Authority (GBRA) owns water rights at Canyon Lake. Under certificate of adjudication no. 18-2074 the GBRA is permitted to divert and to use up to 50,000 acre-feet annually for recreational, municipal, domestic, industrial, and irrigation purposes. During the years 1990, 1991 and 1992 GBRA used 2,135; 6,187 and 8,317 acre-feet, leaving annual allocation surpluses of 47,865; 43,813 and 41,683 acre-feet respectively.

Figure 11 indicates that Canyon Lake is located within the zone where water availability is considered to be generally insufficient for new water development projects.

Table 9 shows that Canyon Lake water is generally of good quality and that unusual methods of treatment are probably not required.

c. Medina Lake. The Bexar-Medina-Atascosa Counties Water Control and Improvement District No. One (BMA) owns water rights at Medina Lake. Under certificate of adjudication no. 19-2130 the BMA is permitted to divert and to use up to 66,750 acre-feet annually for irrigation, domestic, and livestock purposes. During the years 1990, 1991 and 1992 the BMA used 43,619; 14,917 and 29,536 acre-feet, leaving annual allocation surpluses of 23,131; 51,833 and 37,214 acre-

feet, respectively. A Water Sale Agreement, executed August 19, 1991, allows the Bexar Metropolitan Water District (BMWD) to buy an unspecified quantity of "excess water" from the BMA. However, no substantial amounts of water can be sold under this agreement until the certificate of adjudication is amended, allowing more of the allocation to be used for municipal purposes. In addition, a recent study by the U.S. Bureau of Reclamation indicates that the lake has a firm yield of only 29,000 acre-feet annually.

Figure 11 indicates that Medina Lake is located on the boundary between the zone where water availability is considered to be generally insufficient for new water development projects and the zone where water availability is considered to be generally sufficient only for term projects.

Table 9 shows that Medina Lake water is generally of good quality and that unusual methods of treatment are probably not required.

C. <u>Existing Flood Control Structures</u>

The Salado Project is a program involving the San Antonio River Authority (SARA), Bexar County, the City of San Antonio, the U.S. Department of Agriculture Soil Conservation Service and the Alamo Soil and Water Conservation District No. 330. The project provides flood protection, aquifer recharge, water conservation and erosion control through the use of 14 dams.

Twelve of the dams are located in the study area. However, 10 of the 12 are located over the EARZ and are considered, for purposes of the study, as recharge structures for the Edwards Aquifer. Therefore, only two structures are considered to be relevant to the study. The two dams are located on the Camp Bullis Military Reservation and are referred to as SARA Structures No. 1 and No. 2. Figure 10, found at the end of Volume 2, shows the locations of the structures and the extent of their contributing watersheds.

1. <u>Salado Creek.</u> SARA Structure No. 1 is located on Salado Creek between Middleton Hill and Neutze Hill. It is 75 feet high, creates 4,189 acre-feet of storage and has a contributing watershed of 7,535 acres. The estimated safe annual yield is 378 acre-feet.

At least one sink hole is known to exist in the storage area.

Figure 11 indicates that SARA Structure No. 1 falls within the zone where water is expected to be available on a perpetual permit basis. The RIRWA indicates that during the study period of 1940 through 1979, there was sufficient water to exceed the requirements of all permitted allocations in the Salado Creek watershed. Excess amounts of water ranged from a low of 1,386 to a high of 75,769 acre-feet annually. The records of the TWC show that water rights for approximately 13,800 acre-feet annually have been canceled since 1979. Therefore, new water rights may be obtainable at SARA Structure No. 1.

Water quality tests show elevated iron concentrations and fecal coliform counts to be slightly higher than the TWC Stream Standards. However, the sample was taken from a turbid pool a number of hours after a rain storm and may be of a lesser quality than the general runoff.

2. <u>Lewis Creek.</u> SARA Structure No. 2 is located on a tributary of Salado Creek called Lewis Creek between Neutze Hill and McIndoe Hill. It is 55 feet high, creates 2,293

acre-feet of storage and has a contributing watershed of 3,294 acres. The estimated safe annual yield is 165 acre-feet.

Figure 11 indicates that, like SARA Structure No. 1, SARA Structure No. 2 falls within the zone where water is expected to be available on a perpetual permit basis. The RIRWA indicates that during the study period of 1940 through 1979, there was sufficient water to exceed the requirements of all permitted allocations in the Salado Creek watershed. Excess amounts of water ranged from a low of 1,386 to a high of 75,769 acre-feet annually. The records of the TWC show that water rights for approximately 13,800 acre-feet annually have been canceled since 1979. Therefore, new water rights may be obtainable at SARA Structure No. 2.

Water quality tests show that the stream base flow is hard and that the fecal coliform count falls right at the TWC's typical stream target value of 200. In general, the water quality appears to be good.

D. Potential Impoundments

Potential impoundments are identified as sites which have topographic features that are suitable for dam construction, safely yield more than 150 acre-feet annually, have low levels of development in the dam and impoundment areas, and are not far from population centers in the study area. Although geology is very important in assessing a potential dam site, the scope of the study limits the discussion of geology to cursory references.

Nine potential impoundment sites are identified and are shown with contributing watersheds in Figure 10, found at the end of Volume 2. Three of the sites and their watersheds are located entirely within the study area. Two of the sites and their watersheds are located on the boundary of the study and four of the sites and their watersheds are located entirely outside of Bexar County, north of the study area.

1. <u>San Geronimo Creek.</u> Site No. 1 is located on San Geronimo Creek on the west boundary of the study area. The contributing watershed of 10,930 acres has an estimated safe annual yield of approximately 547 acre-feet.

However, Figure 11 indicates that the site is located in the zone where new water rights are available only on a term basis. The site is also within the Applewhite watershed. The RIRWA indicates that during the study period of 1940 through 1979, there was sufficient water to exceed the requirements of all permitted allocations in the Medina River watershed between Medina Lake and the San Antonio River. Excess amounts of water ranged from a low of 62 to a high of 95,808 acre-feet annually. Since the Applewhite Reservoir project has rights to 70,000 acre-feet annually, new water rights of any significant amount may not be available on San Geronimo Creek on a permanent basis.

Water quality tests indicate hard water and a slightly elevated fecal coliform count. In general, the quality is good.

2. <u>Balcones Creek.</u> Site No. 2 is located on Balcones Creek on the northwest boundary of the study area. The contributing watershed of 11,388 acres has an estimated safe annual yield of approximately 569 acre-feet. Figure 11 indicates that the site is located in the zone where new water rights are available on a perpetual basis.

Figure 11 indicates that Balcones Creek falls just within the zone where water is expected to be available on a perpetual permit basis. The RIRWA indicates that during the study period of 1940 through 1979, there was commonly insufficient water to meet the requirements of all permitted allocations in the watershed of Cibolo Creek upstream of Selma. However, the records of the TWC show that water rights for approximately 22,000 acre-feet have been canceled since 1979. Therefore, additional water rights may now be available on Balcones Creek.

Quality tests indicate that the water is of good quality, but hard.

3. <u>Unnamed Tributary of San Geronimo Creek.</u> Site No. 3 is located on an unnamed tributary of San Geronimo Creek in the west part of the study area. The contributing watershed of 5,968 acres has an estimated safe annual yield of approximately 298 acre-feet.

However, Figure 11 indicates that the site is located in the zone where new water rights are available only on a term basis. The site is also within the Applewhite watershed. The RIRWA indicates that during the study period of 1940 through 1979, there was sufficient water to exceed the requirements of all permitted allocations in the Medina River watershed between Medina Lake and the San Antonio River. Excess amounts of water ranged from a low of 62 to a high of 95,808 acre-feet annually.

Since the Applewhite Reservoir project has rights to 70,000 acre-feet annually, new water rights of any significant amount may not be available at the site on a permanent basis. Although no water samples were taken on this creek and no analysis results were found, the inorganic makeup is probably similar to that of San Geronimo Creek - good quality, but hard.

4. <u>Leon Creek.</u> Site No. 4 is located on Leon Creek in the west part of the study area. The contributing watershed of 3,082 acres has an estimated safe annual yield of approximately 154 acre-feet.

However, Figure 11 indicates that the site is located in the zone where new water rights are available only on a term basis. The site is also within the watershed of the Leon Creek Diversion Dam. The RIRWA indicates that during the study period of 1940 through 1979, there was sufficient water to exceed the requirements of all permitted allocations in the Medina River watershed between Medina Lake and the San Antonio River. Excess amounts of water ranged from a low of 62 to a high of 95,808 acre-feet annually. Since the Leon Creek Diversion Dam project has rights to 12,300 acre-feet annually, new water rights of any significant amount may not be available at the site on a permanent basis.

Water quality information is available for two locations on Leon Creek. Test results at Raymond Russell Park are obtained from the TWC and test results at a point about 3.2 miles downstream are obtained from SAWS. It should be kept in mind that the nearest sample site is approximately 7.5 miles downstream from the potential impoundment site. However, samples taken from the nearest site show no quality problems. The samples taken from the farthest site show low pH levels and high fecal coliform counts. The reason for the difference in water quality is uncertain and may require further investigation. The upstream sample with the better quality is probably more representative of the water at the potential impoundment site.

Į.

5. <u>Chimenea Creek.</u> Site No. 5 is located on Chimenea Creek in the west part of the study area. The contributing watershed of 3,287 acres has an estimated safe annual yield of approximately 164 acre-feet.

However, Figure 11 indicates that the site is located in the zone where new water rights are available only on a term basis. The site is also within the watershed of the Leon Creek Diversion Dam. The RIRWA indicates that during the study period of 1940 through 1979, there was sufficient water to exceed the requirements of all permitted allocations in the Medina River watershed between Medina Lake and the San Antonio River. Excess amounts of water ranged from a low of 62 to a high of 95,808 acre-feet annually. Since the Leon Creek Diversion Dam project has rights to 12,300 acre-feet annually, new water rights of any significant amount may not be available at the site on a permanent basis.

Although no water quality test results are known for the watershed, a similarity to San Geronimo Creek and Upper Leon Creek is expected. Therefore, the general water quality is expected to be good with possible hardness or slightly elevated fecal coliform counts.

6. <u>Pleasant Valley Creek.</u> Site No. 6 is located on Pleasant Valley Creek north of the study area. The contributing watershed of 13,934 acres has an estimated safe annual yield of approximately 697 acre-feet.

Figure 11 indicates that the site is located in the zone where new water rights are available on a perpetual basis.

The RIRWA indicates that during the study period of 1940 through 1979, there was commonly insufficient water to meet the requirements of all permitted allocations in the watershed of Cibolo Creek upstream of Selma. However, the records of the TWC show that water rights for approximately 22,000 acrefeet have been canceled since 1979. Therefore, additional water rights may now be available on Pleasant Valley Creek.

Į.

Testing of the sample from location number 5 shows the water quality to be generally good, but with high iron content and a high fecal coliform count. The high iron content may be due to the exposed Glen Rose formation in the area and the high fecal count is probably due to the fact that much of Pleasant Valley is used for grazing cattle. Although coagulation and filtration or reverse osmosis may be required to remove the iron, it should be noted that the sample was taken from a quiescent, but turbid pool a number of hours after a rain event. Water captured in an impoundment would probably be less turbid and have less iron content because solids would have a better opportunity to settle out.

Dam construction may be complicated by the presence of a new residential subdivision. If the site is considered in further studies, the impact of the development should taken into consideration.

7. <u>Kelly Creek.</u> Site No. 7 is located on Kelly Creek north of the study area. The contributing watershed of 3,496 acres has an estimated safe annual yield of approximately 175 acre-feet.

Figure 11 indicates that the site is located in the zone where new water rights are available on a perpetual basis. The RIRWA indicates that during the study period of 1940

through 1979, there was commonly insufficient water to meet the requirements of all permitted allocations in the watershed of Cibolo Creek upstream of Selma. However, the records of the TWC show that water rights for a net of approximately 22,000 acre-feet have been canceled since 1979. Therefore, additional water rights may now be available on Kelly Creek.

The water quality of Kelly Creek is expected to be similar to that of Pleasant Valley Creek. There may be a high iron content requiring coagulation and filtration or reverse osmosis.

8. <u>Cibolo Creek.</u> Site No. 8 is located on Cibolo Creek north of the study area. The contributing watershed of 48,650 acres has the potential to safely yield nearly 3,500 acre-feet annually with a small reservoir. A higher yield could be obtained with a larger reservoir. Average runoff is estimated at 22,000 acre-feet per year.

Figure 11 indicates that the site is located just within the zone where new water rights are available on a perpetual basis. Although the RIRWA indicates that during the study period of 1940 through 1979 there was commonly insufficient water to meet the requirements of all permitted allocations in the watershed of Cibolo Creek upstream of Selma, the records of the TWC show that water rights for approximately 22,000 acre-feet have been canceled since 1979. Therefore, additional water rights may now be available at Site No. 8 on Cibolo Creek. However, the City of Boerne owns rights to 833 acre-feet upstream which should be subtracted from yield estimates for Site No. 8. Samples from location No. 6 indicate that the water quality is good, except for fecal counts which are elevated at times.

.

Offsetting water supply shortfalls can sometimes be aided by the reuse of wastewater. A study of the TWC's waste disposal permit file indicates that six facilities have permits to handle wastewater in the study area. Five of the facilities are wastewater treatment plants and one is a concrete manufacturing plant. Two of the wastewater treatment plants currently have users for their effluent and the concrete manufacturing plant recycles all of its process water. The remaining three wastewater treatment plants discharge a total of approximately 230 acre-feet annually which can potentially be reused. Table 10 summarizes the study findings for wastewater reuse in the study area. Figure 10, found at the end of Volume 2, shows the locations of the facilities as potential and existing reuse sites.

	TABLE 10: WASTEWATER EFFLUENT IN NORTH BEXAR COUNTY								
PLANT	PERMITTEE	PLANT LOCATION	PERMITTED CAPACITY (MgD)	1993 PLANT LOAD (MGD)	1993 REUSE (MGD)	1993 Effluent Available For Reuse (MGD)	TYPE OF EXISTING REUSE		
1.	Elkhorn Company, Inc.	Fair Oaks	0.5	0.04	0.04	0	Golf course irrigation		
2.	Leon Springs Utility company	Dominion	0.15	0.125	0.125	0	Golf course irrigation		
3.	San Antonio Municipal Utility District No. 1	San Antonio Ranch	0.04	0.025	0	0.025			
4.	San Antonio Pre-Stressed Company	San Antonio Pre-Stressed Company	0.08	0.040	0.040	0	manufacturing		
5.	U.S. Department of the Army	Camp Bullis	0.18	0.15	0	0.15			
6.	U.S. Department of the Army	Camp Stanley	0.03	0.033	0	0.033			
TOTAL EFFLUENT AVAILABLE FOR RE-USE 0.208 MGD (230 ACRE-FEET ANNUALLY)									

A. Fair Oaks Subdivision

The wastewater treatment plant for the Fair Oaks subdivision (and city) is permitted in the name of the Elkhorn Company, Inc. of Boerne, Texas under permit number 11867-01. The permit is a zero discharge permit, allowing no direct outfall to a receiving water course. Instead, spray irrigation of a golf course is specified as the means of discharge. The facility, which treats residential wastewater, is permitted for 0.5 MGD and is currently treating approximately 0.04 MGD. All effluent from the facility is currently being reused. The facility location is indicated as Site No. 1 on Figure 10, found at the end of Volume 2.

B. <u>The Dominion Subdivision</u>

The wastewater treatment plant for the Dominion subdivision is permitted under the name of the Leon Springs Utility Company of Austin, Texas under permit number 12557-001. Spray irrigation of a golf course is used as the means of discharge. The facility, which treats residential wastewater, is permitted on an interim basis for 0.15 MGD and is currently treating approximately 0.125 MGD. The permit also allows for expansion of the facility in order that it may treat up to 0.8 MGD. All effluent from the facility is currently being reused. The facility location is indicated as Site No.2 on Figure 10, found at the end of Volume 2.

C. <u>San Antonio Ranch Subdivision</u>

The wastewater treatment plant for the San Antonio Ranch subdivision is permitted under the name of the San Antonio Municipal Utility District No. 1 of Helotes, Texas

under permit number 11647-001. The permit allows two stages of treatment capacity, both stages requiring a zero discharge facility with no direct outfall to a receiving water course. The facility site is located adjacent to the San Antonio Ranch subdivision and is indicated as Site No. 3 on Figure 10, found at the end of Volume 2. The interim facility, which treats residential wastewater, is permitted for 0.04 MGD and is currently treating approximately 0.025 MGD. The future expanded facility is permitted to treat up to 0.075 MGD. Effluent for reuse may be available from both interim and final plant stages.

D. <u>San Antonio Pre-stressed Company</u>

The San Antonio Pre-Stressed Company of San Antonio, Texas is permitted under permit number 02961 to store and to recycle process wastewater from concrete production. The permit is a zero discharge permit, allowing no outfall to a receiving water course. Instead, all wastewater is recycled by the facility. The facility is permitted for an average daily load of 0.04 MGD with allowable daily maximums of 0.08 MGD. All effluent from the facility is currently being reused. The facility location is indicated as Site No. 4 on Figure 10, found at the end of Volume 2.

E. <u>Camp Bullis</u>

The wastewater treatment plant for Camp Bullis is permitted under the name of the U.S. Department of the Army under permit number 12080-01. The permit is a zero discharge permit, allowing no direct outfall to a receiving water course. Instead, the effluent is discharged as irrigation to

a perennial pasture located near the treatment plant. The facility, which treats domestic wastewater, is permitted for 0.8 MGD and is currently treating approximately 0.15 MGD. The plant operator indicates that the facility's capacity may soon be increased to 0.6 MGD. All of the effluent from the facility may be available for other forms of reuse. The facility location is indicated as Site No. 5 on Figure 10, found at the end of Volume 2.

F. <u>Camp Stanley</u>

The wastewater treatment plant for Camp Stanley is permitted under the name of the U.S. Department of the Army under permit number 12111-01. The permit allows effluent to be discharged to an unnamed tributary of Leon Creek. The facility, which treats domestic wastewater, is permitted for 0.03 MGD and is currently treating approximately 0.033 MGD. All of the effluent may be available for reuse from the facility. The facility location is indicated as Site No. 6 on Figure 10, found at the end of Volume 2.

V. WATER RESOURCES AVAILABILITY

A. <u>Groundwater</u>

1. <u>Trinity aquifer</u> Demand for water from the Trinity aquifer was approximately 6,300 acre-feet in 1990. The groundwater portion of the report (Volume 1) shows that, in response to the demand, the Trinity aquifer lost approximately 600 acre-feet of storage that year. Considering the historic trend of increasing demand, it is clear that the Trinity aquifer has an insufficient capacity to meet the increasing demand of the Trinity-using population using

current pumping arrangements and that the amount of water in aquifer storage has probably decreased since 1990 and will continue to do so unless additional water resources are developed. Even if the pumping practices of north Bexar County were to be improved by reducing the density of well sites, it is estimated in the groundwater portion of the report that only 1,000 to 2,000 acre-feet of additional sustainable yield can be achieved.

In order to stop the reduction in aquifer storage, the minimum course of action would be to provide a quantity of water to the study area equivalent to that which is being removed from storage. This figure can be estimated based on the difference between the sustainable yield and projected demand figures. Table 11 lists future demand estimates, as developed previously in the report, and the corresponding aquifer storage loss or minimum supplement requirement. The table shows that minimum target values of supply from

TABLE 11:	ESTIMATED FUTURE DEMAND AND STORAGE LOSS FOR THE TRINITY AQUIFER IN NORTH BEXAR COUNTY							
	FUTURE TRI) AQUIFER DEMAND (ACRE-FEET)		FUTURE AQUIFER STORAGE LOSS (ACRE-FEET/YEAR)					
YEAR	LOW	HIGH	LOW	HIGH				
2000	7,710	7,800	2,710	2,800				
2010	8,850	9,130	3,850	4,130				
2020	9,770	10,350	4,770	5,350				

from supplemental sources of water should be approximately 2,710 to 2,800 acre-feet in the year 2000; 3,850 to 4,130 acre-feet in the year 2010; and 4,770 to 5,350 acre-feet in the year 2020.

2. Edwards Aquifer. Water systems serving Edwards water have been making ever increasing contributions to meet the growing demand. Figure 4 shows the extent of service areas of Edwards and Trinity purveyors in 1993. In 1990, an estimated 14,284 people were being served Edwards water in the study area. The Edwards "service area" is not nearly fully developed and at first glance a potential appears to exist for the Edwards purveyors to be able meet some of the future increased demand. However, since the Texas Legislature passed Senate Bill 1477 in May of 1993, the ability of Edwards purveyors to meet increasing demand in the study area will be drastically reduced. Therefore, this study is based on the assumption that Edwards water will not provide the necessary supplements required for future growth and is not considered as a potential source.

B. <u>Surface Water</u>

Since the North Bexar County study region measures approximately 198,100 acres in area, theoretically it could safely yield over 9,900 acre-feet of surface water annually. However, a significant amount of the study area is unsuitable as watershed or impoundment area because it includes approximately 81,400 acres of the EARZ, it includes highly developed areas, and it includes many small disconnected watersheds which could not be "harvested" cost effectively. Impoundments in the EARZ are considered as potential recharge

structures for the Edwards Aquifer and not as potential sources of water for North Bexar County. The highly developed areas are impractical locations for impoundments because land costs and demolition costs are high. Highly developed regions do not make ideal watersheds for potable supply because they have many potential sources for contamination. And small watersheds require a higher cost per acre-foot of yield than larger watersheds. Approximately only 11,930 acres of the study area may serve as suitable watershed, safely yielding approximately 596 acre-feet of water annually. Because such a yield is too small to meet future demand, surface water sources located outside of the study area are also considered.

1. <u>Existing Impoundments.</u> A search of the TWC's files reveals no existing impoundments within the study area that can produce significant yields. However, three significant impoundments are located outside of the study area.

Although most of Lake Boerne's safe yield is presently owned by the City of Boerne for a drinking water supply, the reservoir may be able to supply additional quantities of water on an irregular basis. Data from the gaging station near Boerne indicates that the "average" year sees approximately 4,800 acre-feet of runoff in excess of the City of Boerne's permitted use of 833 acre-feet. If the necessary agreements can be made with the City of Boerne, the existing 4,046 acrefoot reservoir might be used in a "scalping" arrangement to serve north Bexar County also. It should be noted that, although an excess of water will be available some years, little or no excess water would be available for scalping in other years.

Annual allocation surpluses of over 40,000 acre-feet at Canyon Lake could supply more than the expected maximum shortfall of 5,350 acre-feet per year expected in the year 2020. The GBRA has developed an agreement with the Canyon Lake Water Supply Corporation (CLWSC). The CLWSC has a service area which extends from the Canyon Lake area to the City of Bulverde which is just outside the north boundary of Bexar County as shown in Figure 12. The CLWSC had considered at one time extending mains from Bulverde along U.S. Highway 281 to Loop 1604. The Canyon Lake supply is expected to be accessible, but would require enlarging the planned water treatment plant and transmission system to Bulverde. The transmission would also have to be extended into the study area.

Annual allocation surpluses of over 20,000 acre-feet at Medina Lake could supply more than the expected maximum shortfall of 5,350 acre-feet per year expected in the year 2020. However, a U.S. Bureau of Reclamation's firm yield estimate of 29,000 acre-feet per year suggests that none of the allocation excess is firm yield. The BMA's current use exceeds the firm yield of the lake. Also, the Water Sale Agreement with the BMWD could reduce the allocation surplus and would have to be considered further. The use of Medina Lake would require the construction of a water treatment plant and transmission line with pump stations and ground storage.

2. Existing Flood Control Structures. SARA Structures No. 1 and 2 on Salado and Lewis Creeks together are estimated to be able to safely yield 542 acre-feet annually. This relatively small quantity could be used in an Aquifer Storage and Recovery (ASR) system to relieve groundwater

storage loss. The primary construction costs may be relatively low with minor changes to the dams, a chlorination system, and a transmission pipeline to be built. However, the geology of the area may not to be suitable for maintaining the required permanent reservoir storage. More investigation is necessary.

3. <u>Potential Impoundments.</u> Four of the potential impoundment sites listed earlier in the report, Site No. 1 on San Geronimo Creek, Site No. 3 on a tributary of San Geronimo Creek, Site No. 4 on Leon Creek and Site No.5 on Chiminea Creek are located in the watershed for the Applewhite Reservoir and Leon Creek Diversion Dam. Because water rights are still intact for the Applewhite and Leon Diversion projects, only insignificant amounts of unallocated water are expected to be available and none of the four sites within the watershed are considered further.

Three small potential impoundment sites, including Site No. 2 on Balcones Creek, Site No. 6 on Pleasant Valley Creek and Site No. 7 on Kelly Creek, could collectively provide a safe yield of approximately 1,440 acre-feet. Although it would not satisfy the future demands of the entire study area, the combined yield would probably meet the growing needs of the Fair Oaks area.

The larger potential impoundment, Site No. 8 on Cibolo Creek, may have a potential of safely yielding enough to meet the growing demand for the study. More study is required to determine the availability of unallocated water, the effects of reservoir storage on safe yield, and upon the geologic character of the site.

C. Reusable Wastewater

ŀ.

A total of approximately 230 acre-feet of wastewater effluent annually is potentially available from three wastewater treatment plants in the study area. The potential reuse quantity is small compared to the total demand on the Trinity aquifer and, although the availability of reuse water is expected to increase as the population grows, it will probably remain small compared to the increasing demand.

VI. DEVELOPMENT OF ALTERNATIVE RESOURCES

In the planning of water resource development, the demand for water must be weighed against the effective availability of water under present and future conditions. The effective availability of water is discussed in terms of quantity, water quality, and capital development cost. The reader should note that a complete cost analysis would go beyond capital development costs and include treatment costs, operation and maintenance costs over the life of the projects. However, such an analysis is beyond the scope of the study and should be pursued in further study. The reader should note that the estimates are based upon 1993 engineering and construction costs of treatment plants, transmission systems, disinfection systems, storage tanks, dams and reservoirs. Land costs are not included except for reservoirs. Three types of water resources; groundwater, surface water and reusable wastewater; are discussed with regard to their ability to economically meet future demands. Costs, target supply quantities and rankings are listed in Table 12.

A. <u>Groundwater</u>

The groundwater portion of the report indicates that the Trinity aquifer has a sustainable yield of approximately 5,000 acre-feet annually in the study area. The aquifer was overpumped by about 600 acre-feet in 1990. At the anticipated rates of development and if no alternative sources are introduced, future overpumping is expected to be approximately

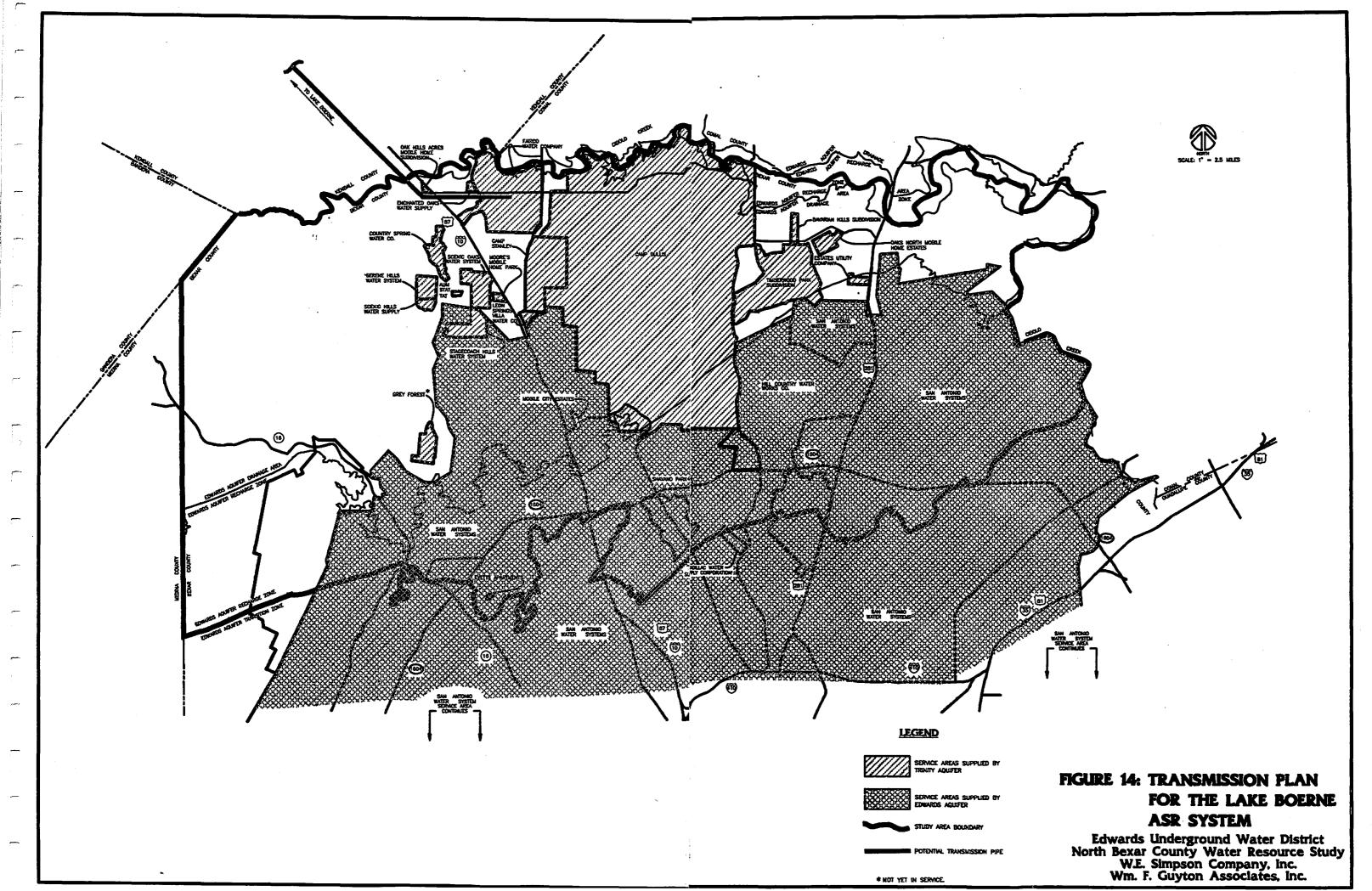
TABLE 12: ALTERNATIVE SURFACE WATER RESOURCES

GENERAL RESOURCE	SPECIFIC ALTERNATIVE RESOURCE AND TYPE	TARGET SUPPLY (ACRE- FEET/YEAR)	APPROXIMATE COST (MILLIONS)	APPROXIMATE COST PER ACRE-FOOT OF ANNUAL SUPPLY	RANK
EXISTING IMPOUNDMENTS	LAKE BOERNE, ASR CANYON LAKE, CONVENTIONAL MEDINA LAKE, CONVENTIONAL	1,500 5,350 5,350	\$6 \$29 \$39	\$4,000 \$5,400 \$7,300	1 2 5
POTENTIAL IMPOUNDMENTS	BALCONES, PLEASANT VALLEY & KELLY CREEKS, ASR CIBOLO CREEK, CONVENTIONAL	1,400 5,350	\$19 \$33 TO \$43	\$10,000 TO \$14,000 \$6,200 TO \$8,000	4 3

2,710 to 2,800 acre-feet in the year 2000; 3,850 to 4,130 acre-feet in the year 2010; and 4,770 to 5,350 acre-feet in the year 2020. Although the relocation of wells may increase the sustainable yield by 1,000 to 2,000 acre-feet annually as indicated in the groundwater portion of the report, this expensive approach would be only a partial solution to a regional problem.

B. Surface Water

k


łİ.

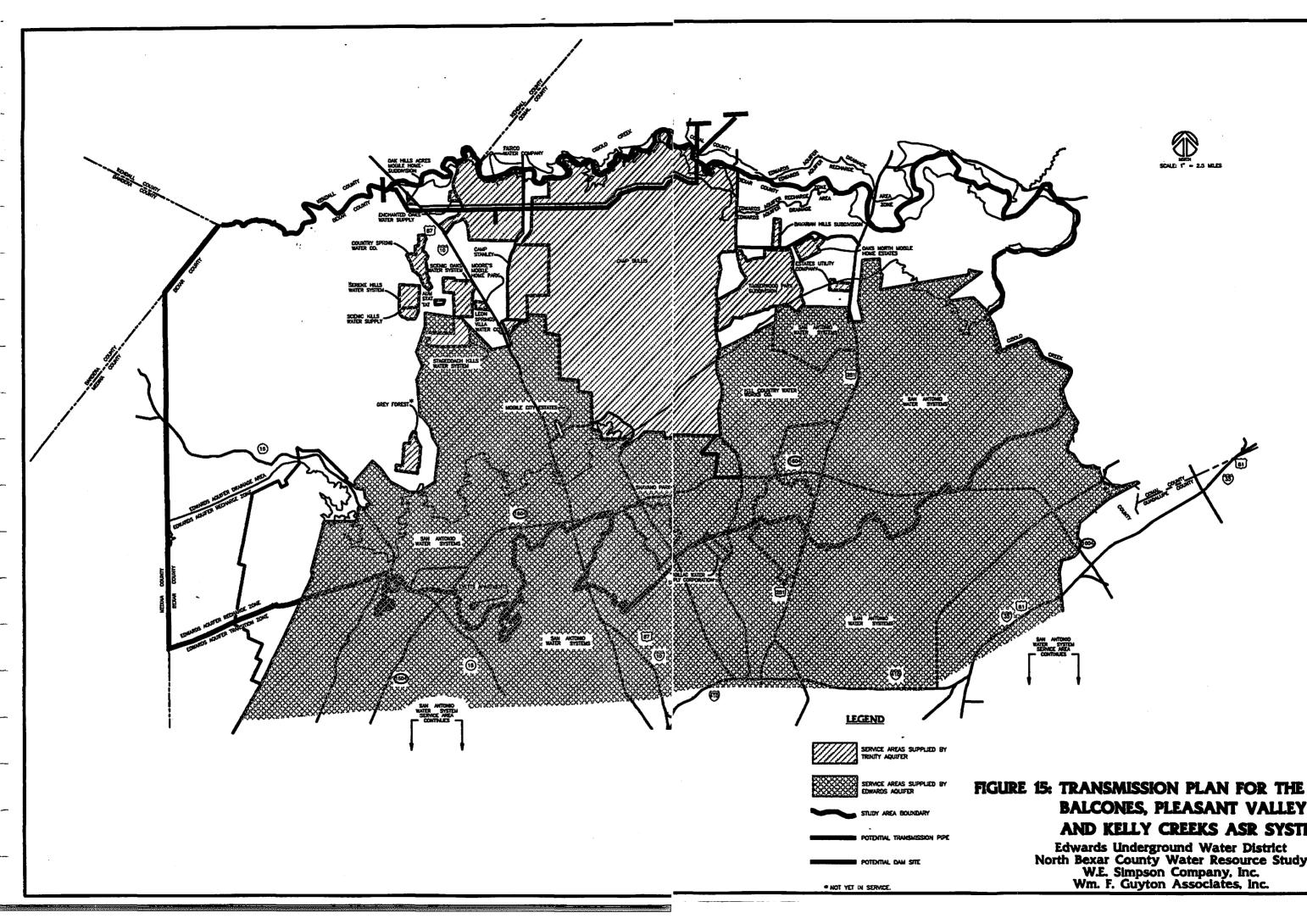
1. Existing Impoundments. Lake Boerne may be able to supply enough water to feed an ASR system which could offset the cone of depression in the Fair Oaks area. The ASR system would address only the Fair Oaks area and would not address the entire study area. It would require approximately 62,500

lineal feet of transmission line and a disinfection system in order to meet the Fair Oaks estimated demand of 1,500 acrefeet per year for the year 2020. Construction and engineering costs for the system are estimated to be approximately \$6 million. A potential transmission concept plan is shown in Figure 14.

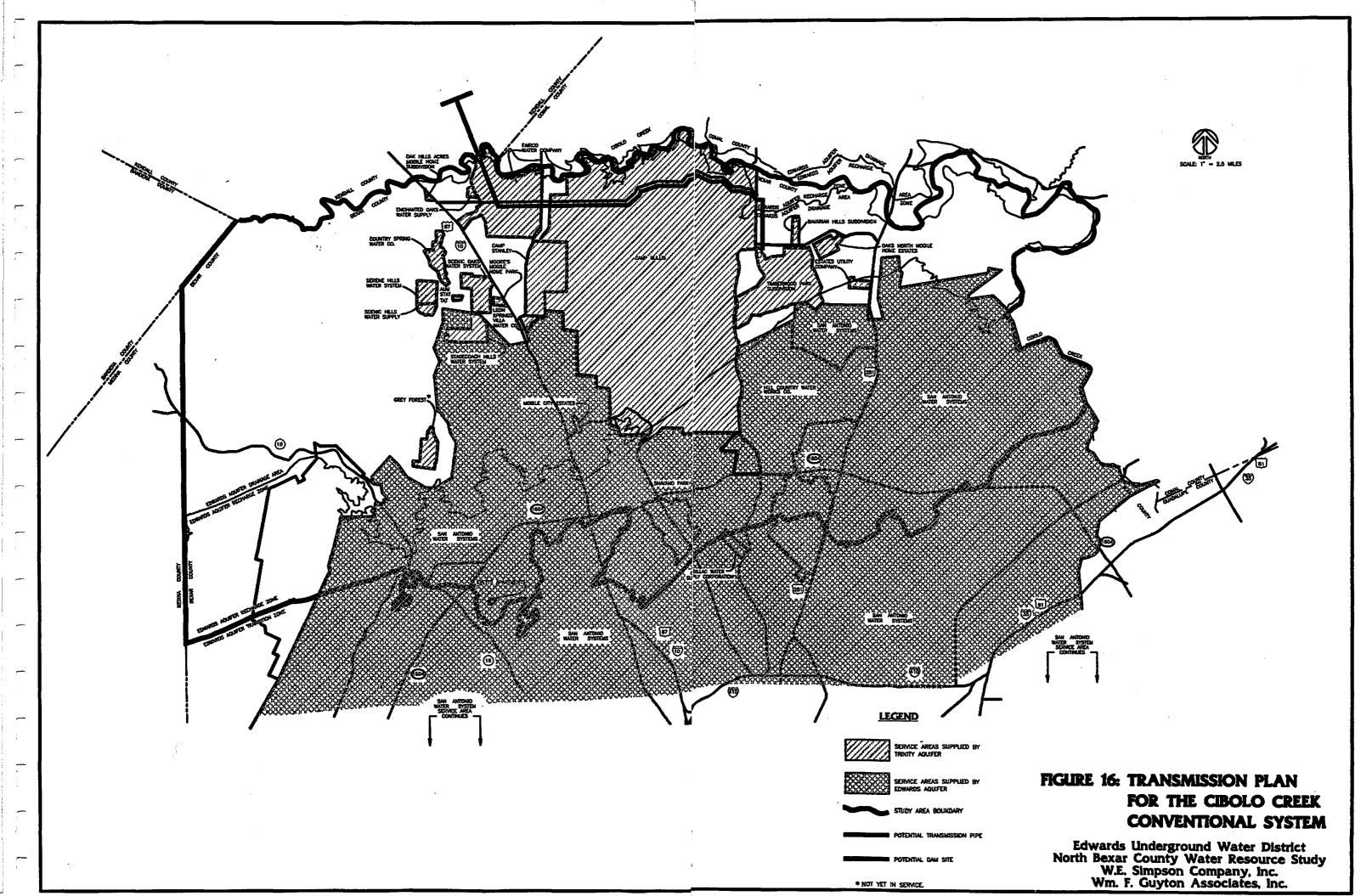
Canyon Lake is expected to be able to supply enough water to meet all of the growing demand of the study area for the duration of the study period. Canyon Lake would be used as a conventional surface source and would require upgrading the facilities currently planned by the Canyon Lake Water Supply Corporation (CLWSC). The water treatment plant would have to be upgraded from a 2 MGD capacity to a 7 MGD capacity. Approximately 98,700 lineal feet of transmission pipe would have to be upgraded accordingly, approximately 98,000 lineal feet of transmission line would have to be added to the system near and within the study area, storage would have to be added and lift stations would have to be modified. The increase over the cost of the CLWSC's existing plan is estimated to be approximately \$29 million. A potential transmission concept plan is shown in Figure 12.

The Water Sale Agreement with the BMWD and the limited reservoir yield are expected to prevent Medina Lake from being capable of supplying water to the study area. However, if it were to be used, Medina Lake would be used as a conventional surface source. Its use would require the construction of a 5

MGD water treatment plant; 194,000 lineal feet of transmission pipe; storage tanks and lift stations. The approximate cost is estimated to be \$39 million. A potential transmission concept plan is shown in Figure 12.


2. Existing Flood Control Structures. The dams at existing flood control Site Numbers 1 and 2 on Salado and Lewis Creeks could be modified to capture a safe yield of 542 acre-feet annually for an ASR system or as a conventional surface impoundment. However, the yield is small compared to the estimated future demand for water from new sources of 4,650 acre-feet annually. Additionally, modifications would probably require raising the dams in order to add permanent storage to the existing flood storage in the impoundment area. Because raising of the large structures would probably be costly and the impoundment areas are not expected to hold water well, no costs are estimated for this alternative.

3. <u>Potential Impoundments.</u> A safe yield of over 1,400 acre-feet per year could potentially be obtained from a system of three small dams at the following locations: Site Number 2 on Balcones Creek, Site Number 6 on Pleasant Valley Creek and Site Number 7 on Kelly Creek. Treatment plant costs could be saved by using the system for ASR to recharge the Fair Oaks region. The system would require three new dams, a disinfection system, 72,000 lineal feet of transmission pipe, pump stations, realignment of Ammann Road and a ground storage tank. Cost is estimated at \$19 million and does not include the cost for a reverse osmosis or coagulation system which might be needed for the removal of iron. A potential impoundment and transmission concept plan is shown in Figure 15.


A dam at potential impoundment Site Number 8 on Cibolo Creek could possibly impound as much as 18,000 acre-feet of water. However, perhaps a smaller, less expensive, version of the dam could be constructed to yield the 5,350 acre-feet per year required to augment north Bexar County's existing sources. In addition to a new dam, the Cibolo Creek system would require a water treatment plant, approximately 65,000 lineal feet of transmission pipe, pump stations, and ground storage tanks. The cost is sensitive to the sizing of the dam and is estimated to be in the range of \$33 million to \$43 million. A potential impoundment and transmission concept plan is shown in Figure 16.

C. Reusable Wastewater

Although approximately 230 acre-feet of reusable wastewater was available in 1990 and the quantity is expected to grow with the population, the amount is only approximately one third of the 1990 aquifer storage loss. Additionally, the sources are scattered and two of the three sources are believed to have sporadic discharges. Presently, reusable wastewater is not available in significant quantities, but should be monitored for future applications as the supply grows.

BALCONES, PLEASANT VALLEY AND KELLY CREEKS ASR SYSTEM Edwards Underground Water District North Bexar County Water Resource Study W.E. Simpson Company, Inc. Wm. F. Guyton Associates, Inc.

VII. CONCLUSIONS AND RECOMMENDATIONS

A. <u>CONCLUSIONS</u>

 The population count of north Bexar County was approximately 27,900 in 1990 and may increase to approximately 93,900 by the year 2020.

2. The portion of the population in north Bexar County which uses Trinity water numbered approximately 13,600 in 1990 and may increase to approximately 38,500 by the year 2020.

3. Overpumpage or reduction in storage of the Trinity aquifer occurred at a rate of approximately 600 acre-feet per year in 1990 and is anticipated to increase to a rate possibly as high as 5,350 acre-feet per year by the year 2020 if alternative resources are not employed.

4. The effective yield of the Trinity aquifer for household use is reduced by poor water quality found especially in the upper and lower Trinity. Complex and expensive water treatment such as reverse osmosis and coagulation may be required to remove excess calcium, sulfates, fluorides, and iron.

5. One large surface water source located outside of north Bexar County appears to have the available firm yield to adequately meet its current user demands and to compensate for anticipated shortruns in water in the study area. The surface source is Canyon Lake. A Water Sale Agreement with BMWD and a limited firm yield prevent Medina Lake from being a potential source for the study area.

6. The City of Boerne owns the water rights to virtually all of Lake Boerne's watershed. Therefore, only excess runoff is available at Lake Boerne.

7. A large portion of north Bexar County's surface water yield is lost to water rights for the Applewhite Reservoir/Leon Diversion Dam project.

8. Three small potential dam sites just north of Bexar County on Balcones, Pleasant Valley and Kelly Creeks may provide an annual firm yield of at least 1,400 acre-feet.

9. A potential dam site on Cibolo Creek, just north of Bexar County, may supply a firm yield of 2,650 acre-feet annually, and possibly more.

10. The availability of reusable wastewater was only approximately 230 acre-feet in 1990. Presently, reusable wastewater is not available in significant quantities.

B. RECOMMENDATIONS

1. Pursuing alternative surface water resources is recommended in order to prevent detrimental storage loss in the Trinity aquifer. Top priority should be given to the Fair Oaks region where the groundwater cone of depression is creating an urgent condition.

 Begin further study as soon as possible to see if an ASR project which supplies water from Lake Boerne to Fair Oaks is feasible. 3. Initiate further study to confirm and to more precisely determine the availability of water from Canyon Lake and Lake Boerne and the lack of water from Medina Lake.

4. Initiate further study of potential dam sites on Cibolo Creek, Balcones Creek, Kelly Creek and Pleasant Valley Creek. Include further hydrologic analysis to refine drainage basin yield potentials and to determine the appropriate dam sizing for optimizing yields. Also include more developed geologic analyses of potential dam sites in order to determine their suitability as dam sites. Consider foundation and permeability conditions and impacts upon cost.

5. Further study of the ranked alternatives is recommended to develop a complete cost analysis, including distribution systems, system life expectancies and costs of operation and maintenance.

6. Although the reusable wastewater is currently of a small quantity, it should be monitored for future applications as the supply grows with the increasing population.

VIII. Selected References

- Buckner, H.D., and Shelby, W.J., 1991, Water Resources Data, Texas, Water Year 1991, Vol. 3: U.S. Geological Survey Water-data Report TX-91-3, p. 351.
- Chow, Ven Te, Maidment, David R., 1988, Applied Hydrology: McGraw-Hill Book Company, New York, New York, 572 p.
- City Water Board, 1981, Bexar County Water Purveyors: San Antonio, Texas, p. 2-4.

_____, 1990, Water Statistics: San Antonio, Texas.

- _____, 1991, Bexar County Water Purveyors: San Antonio, Texas, p. 2-4.
- Clark, John W., Vissman, Warren Jr., Hammer, Mark J., 1977 (third ed.), Water Supply and Pollution Control: Harper & Row, Publishers, New York, New York, 857 p.
- Espey, Huston & Associates, Inc., 1982 (draft), Feasibility Study of Recharge Facilities on Cibolo Creek: Austin, Texas, unnum p.
- Guadalupe-Blanco River Authority, 1985 (revised), Boerne Raw Water Supply System Preliminary Cost Estimate: Seguin, Texas, 9 p.
- Hansen and Reinhardt, 1991, Roller-Compacted Concrete Dams: McGraw-Hill, Inc., New York, New York, p. 245-257.
- Linsley, Ray K. Jr., Kohler, Max. A., Paulhus, Joseph L.H., 1982 (third ed.), Hydrology for Engineers: New York, New York, 508 p.
- San Antonio Water System, 1993, Bexar County Water Purveyors: San Antonio, Texas, 28 p.
- San Antonio Water System, Regulatory Compliance, 1993, Edwards Aquifer Recharge Zone Water Resources Data Quarterly Report: San Antonio, Texas, 88 p.
- State of Texas, 1992-1993 (supplement), Official Texas Administrative Code, Title 31: West Publishing Co., St. Paul, Minn., chapter 290.
- Steel, E.W., McGhee, Terence J., 1979 (fifth ed.), Water Supply and Sewerage: McGraw-Hill Book Company, New York, New York, 665 p.

- Texas A&M University, Texas Agricultural Experiment Station, Department of Rural Sociology, 1992, Projections of the Population of Texas and Counties in Texas by Age, Sex, and Race/Ethnicity for 1990-2030: Bryan, Texas.
- Texas Department of Health, Water Hygiene Division, 1988, Rules & Regulations for Public Water Systems: Austin, Texas, 55 p.
- Texas Department of Water Resources, 1983 (draft), Revised Interim Report of Water Availability in the San Antonio River Basin, Texas: Austin, Texas.
- Texas Water Commission, 1992, Drinking Water Standards Phases II and V Fact Sheet: Austin, Texas, 5 p.
- Texas Water Development Board, 1977 (draft), Continuing Water Resources Planning and Development for Texas, Vol. 2: Austin, Texas, p. IV-625 through IV-662.
 - _____, 1990, Water for Texas Today and Tomorrow: Austin, Texas, pp. 3-44 through 3-45.
 - _____, 1992, Water for Texas Today and Tomorrow: Austin, Texas, 104 p.
- University of Texas at Austin, Bureau of Economic Geology, 1974, Geologic atlas of Texas, San Antonio sheet: Austin, Texas, scale 1:250,000
- U.S. Soil Conservation Service, 1984, Engineering Field Manual for Conservation Practices, Vols. 1 and 2: Washington, D.C., chapters 2 and 11.
- Viessman, Warren Jr., Knapp, John W., Lewis, Gary L., Harbaugh, Terence E., 1977 (second ed.), Introduction to Hydrology: I.E.P., New York, New York, 704 p.
- W.E. Simpson Company, Inc. and William F. Guyton Associates, Inc., 1992, Interim report, North Bexar County Water Resources Study for Edwards Underground Water District: 7 p.

IX. APPENDICES

2

A. TWDB Trinity Pumpage Records for Selected Years

.

.

TWDB C	ODE:	[58260]						BEXAR	
					* * Y]	EAR [:	1980		
BAVAR	LIAN HI	LLS SUBD	IV.					SOURCE BASI	N [19]
WATER	SERVI	CE II						AQUIFER	28 -[319]
C/O R	ONALD	MAY, PRES	s.					NUMBER WELL	.S [2]
P.O.	BOX 79	1325			•			RESERVOIR	[]]
SAN A	NTONIO	, TEXAS			78279-	-1325		STATUS = 0	
Jan	ſ	800000]	May		1600000] Sep	1	800000]	
Feb	r	800000]	-	r	1600000		ř	800000]	
Mar	ſ	800000]		ř	1600000	-	ř	800000]	
Apr	ſ	800000]		•	1600000	-	•	800000]	Units:
		WATER T	-	ì	ANNUAL		ř	12800000]	Gallons
				1			L	39.3	Acre-feet
Remarks:	[]		
Seller Cod	le: []	Met	tere	ed/Est: [}	1	Activity Code:	·[]
If purchas	ed, Z	RAW =[], 7 3	FREA	TED =[];		Connections:	• • /
Outside co		-	Pop serv		•	• .		tions metered:	

. .

. .

.

((

.

. • .

TWDB CODE:	[58260]	* * YEAR [BEXAR [1990] SOURCE CO	OUNTY [015]
BAVARIAN H	HILLS SUBDIV.	•	SOURCE BA	• •
WATER SERV	VICE II		AQUIFER	28)-[319]
C/O RONALI	D MAY, PRES.		NUMBER WI	
P.O. BOX 7	791325		RESERVOI	
SAN ANTON	IO, TEXAS	78279-1325	STATUS =	0
				-
Jan (379000] May [734000] Ser	•	
Feb [406000] Jun [1010000] Oct	•	
Mar [419000] Jul [914000] Nov	•	
Apr [439000] Aug [945000] Dec	• • • • • • • • • •	
	WATER TYPE [SG]	ANNUAL TOTAL	[7916000]] Gallons
	SELF-SUPPLIE GROM	nd water	24.3	Acre-feet
Remarks: []	

. .

· · ·

.

. . .

ſ

() |-|-

| | ||

(m) (•

TWDB CODE	: [58260]				1	BEXAR	
			* * YEA	R [19	92]		UNTY [015]
BAVARIAN	HILLS SUBDIV.			•		SOURCE BA	
WATER SE	RVICE II					AQUIFER	28 - [319]
C/O RONA	LD MAY, PRES.					NUMBER WE	• •
P.O. BOX	-					RESERVOIR	• •
SAN ANTO	NIO, TEXAS		78279-1	325		STATUS =	• •
	•				1	. – –	-
Jan (422000] May	1	745000]	Sep	[239000]	
Feb [515000] Jun	ιĒ	1093000]	Oct	Î	1243000]	
Mar [533000j Jul	. Ĩ	995000 j	Nov	Ì	4840001	
Apr [563000] Aug	i Î	742000]	Dec	i	472000]	Units:
• •	WATER TYPE [S	-	ANNUALT		ì	80460001	
	•	•			•	24.7	Acre-feet
Remarks: [1			
Seller Code:	א ר ז	letere	d/Est: [2	1	Act	ivity Cod	e: []
If purchased,	• •		TED =[];	•		Connection	• •
Outside conn:						ons metere	

·

.

,

[

				ER U	5E 50	JKVEI - MU	NICI.	PAL U		
TWDB C	CODE:	[84008	1						BEXAR	
						* * Y	EAR	[199	0] SOURCE COUN	• •
COUNT	rry spr	LINGS WA	ATER	COMP	ANY	•			SOURCE BASI	N [19]
C/O T	JTILITY	MANAGN	1ENT	SYST	ems				AQUIFER	28 -[000]
ATTN	: MANAG	ER							NUMBER WELL	S [1]
P.O.	BOX 79	1325							RESERVOIR	r i
SAN A	ANTONIC	, TEXAS	5			78279	-132	5	STATUS = 0	
Jan	1		1	May	ſ		1 S	ep [<u> </u>	
Feb	ſ		-	Jun	ř		-	ct [, I	
Mar	r			Jul	ř		-	ov [1	
Apr	r			Aug	ř		- <u>-</u>	ec [J	Units:
hr	L	WATER	-	-	1	ANNUAL	•		32734000	Gallons
		WAIER	IIFE	199	1	ANNOAL	1011	որ [100.5	Acre-feet
Remarks:	(EST B	Y TWDB						1		
Seller Cod	le: [1		Me	tered	l/Est: []	•	Activity Code:	[]
If purchas	sed. Z	RAW =	1	. Z :	IREA?	TED =[];		Connections:	• •
Outside co		•	-			•	• •	Conne	ctions metered:	
Z Connecti			-	MM					r(gal)	

.

1 |-|-

1 | |

[]]

()

Į.

B

TWDB CODE:	=== TWDB WATER US [84008]	SE SURVEY - MUNICIPA	AL USERS CONCERNMENTED BEXAR
	[]	* * YEAR	1992] SOURCE COUNTY [015]
COUNTRY SPI	RINGS WATER COMPA		SOURCE BASIN [19]
C/O UTILITY	Y MANAGMENT SYSTI	EMS	AQUIFER 28 - [000]
ATTN: MANAG	GER		NUMBER WELLS [1]
P.O. BOX 79	91325		RESERVOIR []
SAN ANTONIO	D, TEXAS	78279-1325	STATUS = 0
Jan [791000] May	[1381000] Sej	2470000]
Feb [852000] Jun	[1653000] Oci	: [2512000]
Mar [913000] Jul	[3131000] Nov	r [1227000]
Apr [1340000] Aug	[2210000] Dec	: [1052000] Units:
	WATER TYPE [SG] ANNUAL TOTAL	[19532000] Gallons
			59.9 Acre-feet
Remarks: []
Seller Code: [] Met	tered/Est: [2]	Activity Code: []
	RAW =[], Z 1	TREATED =[];	Connections: 135
Outside conn:	Pop serv	ved: Z Co	onnections metered: 100
Z Connections: H	RES 100 COMM	IND ; EFFI	LUENT(gal)

[

14		CODE:	[179302]			4 4 37754			BEXAR	
		~ ~ ~ ~ ~ ~				* * YEA	nk []	1990] SOURCE COUN	• •
			T RANCH						SOURCE BASI	
	-		T-THERAPY		NC	•			AQUIFER	• •
A	TTN	: WARR	EN P. MCKI	NNEY					NUMBER WELL	.S [1]
2	555	0 BOER	NE STAGE R	OAD					RESERVOIR	[]
S	AN	ANTONI	O, TEXAS			. 78255			STATUS = 0)
_										
J	an	[416000]	May	[720000]	Sep	1	433000]	
F	еb	[487000]	Jun	E	1349000]	0ct	[473000]	
M	ar	ĺ	380000]	Jul	ĺ	834000]	Nov	1	387000]	
A	pr	Ī	521000]	Aug	ĺ	809000]	Dec	j	462000]	Units:
		-	WATER TY			ANNUAL	OTAL	Ī	7271000]	Gallons
				•	-			-	22.3	Acre-fee
mark	S :	[]		
ller	Co	de: []	Met	er	ed/Est: []		Activity Code:	[]
pur	cha	sed, Ž	RAW =), Z I	RE	ATED = [];	-		Connections:	85
		onn:	-	op serv					ions metered:	

ſ

ſ

	WATER USE S	URVEY - MUNICIE	PAL USE		******
TWDB CODE: [179302	2]			BEXAR	
•	•	* * YEAR	[1992	SOURCE COUN	TY [015]
AUM SAT TAT RANCH			-	SOURCE BASI	
C/O CONCEPT-THERAF	Y INST. INC.				28 - [284]
ATTN: WARREN P. MC				NUMBER WELL	• • •
25550 BOERNE STAGE	ROAD			RESERVOIR	יין וויז
SAN ANTONIO, TEXAS	· · · · ·	78255		STATUS = 0	· ·
				1	
Jan [424000] May [445000] Se	ep (592000]	
Feb (320000] Jun [401000] 00	it [613000]	
Mar [473000	Jul	1136000] No	ov (389000]	
Apr [456000	Aug [814000] De	≥c [277000]	Units:
• •	TYPE [SG]	ANNUAL TOTA	AL [6340000 <u>]</u>	Gallons
			-	19.5	Acre-feet
Remarks: [1		
Seller Code: []	Metere	d/Est: []	A	ctivity Code:	[]]
If purchased, Z RAW =[], Ž TREA			Connections:	• •
Outside conn:	Pop served:		Connect	ions metered:	
Z Connections: RES	COMM		LUENT (

.

||-|-|

ľ

1. 1. 1.

(**7**7)

TWDB CODE: [267335] BEXAR * * YEAR [1992] SOURCE COUNTY [015] ENCHANTED OAKS SUBDIVISION SOURCE BASIN [19] ATTN: LOUIS L. VOELCKER, OWNER NUMBER WELLS [1] 29212 ENCHANTED GLEN NUMBER WELLS [1] BOERNE, TEXAS 78006 STATUS = 0 Jan [23100] May [] Sep [] Feb [21600] Jun [] Oct [] Mar [25700] Jul [] Nov []
ENCHANTED OAKS SUBDIVISION SOURCE BASIN [19] AQUIFER 28 -[000]ATTN: LOUIS L. VOELCKER, OWNER NUMBER WELLS [1] RESERVOIR []29212 ENCHANTED GLEN BOERNE, TEXAS78006Jan [23100] May [] Sep [] Feb [21600] Jun [] Oct []
ATTN: LOUIS L. VOELCKER, OWNER AQUIFER 28 -[000] 29212 ENCHANTED GLEN NUMBER WELLS [1] BOERNE, TEXAS 78006 Jan [23100] May [] Sep [] Sep [] Feb [21600] Jun [] Oct [] Oct []
ATTN: LOUIS L. VOELCKER, OWNER [NUMBER WELLS [1] 29212 ENCHANTED GLEN [RESERVOIR [] BOERNE, TEXAS 78006 Jan [23100] May [] Sep [] Feb [21600] Jun [] Oct []
29212 ENCHANTED GLEN RESERVOIR] BOERNE, TEXAS 78006 STATUS = 0 Jan [23100] May [] Sep [] Feb [21600] Jun [] Oct []
BOERNE, TEXAS 78006 STATUS = 0 Jan [23100] May [] Sep [] Feb [21600] Jun [] Oct []
Jan [23100] May [] Sep [] Feb [21600] Jun [] Oct []
Feb [21600] Jun [] Oct []
Feb [21600] Jun [] Oct []
Mar [25700] Jul [] Nov []
Apr [30400] Aug [] Dec [] Units:
WATER TYPE [SG] ANNUAL TOTAL [100800] Gallons
.3 Acre-feet
Remarks: []
Seller Code: [] Metered/Est: [3] Activity Code: []
If purchased, Z RAW =[], Z TREATED =[]; Connections: 5
Outside conn: Pop served: 10 Z Connections metered: 80.0
Z Connections: RES 100 COMM IND ; EFFLUENT(gal)

•

•

1

1

| | |

100

TWDB WATER USE	SURVEY - MUNICIPAL USER	<pre></pre>
TWDB CODE: [267900]		BEXAR
	* * YEAR [1985]	
ENCINO PARK M.U.D. #1		SOURCE BASIN [19]
		AQUIFER -[]
P.O. BOX 34715		NUMBER WELLS []
		RESERVOIR []
SAN ANTONIO, TEXAS	78265-4715	STATUS = 1
		<u> </u>
Jan [] May [] Sep []
Feb [] Jun [] Oct []
Mar [] Jul [] Nov (]
Apr [] Aug [] Dec [] Units:
WATER TYPE [PG]	ANNUAL TOTAL [] Gallons
• •	-	Acre-feet
Remarks: [ANNEXED BY SAN ANTONIO	CITY WB)	
•	•	tivity Code: []
If purchased, Z RAW =[], Z TRE		Connections:
Outside conn: Pop served		lons metered:
Z Connections: RES COMM	IND ; EFFLUENT (
		5 /

l

	B WATER US	E SURVEY -	- MUNIC	IPAL USE	RS ==========	
TWDB CODE: [86605	3]				BEXAR	
		*	* YEAR	[1990] SOURCE COUN	[Y [015]
THE ESTATES UTILI	TY CO.				SOURCE BASIN	1 [19]
STONEGATE					AQUIFER 2	28 -[000]
ATTN: RONALD MAY,	GEN MGR.				NUMBER WELLS	6 [1]
P.O. BOX 791325					RESERVOIR	ſĴ
SAN ANTONIO, TEXA	S	78	3279-13	25	STATUS = 0	• •
		-				
Jan [] May	L	-	Sep []	
Feb (] Jun	[Oct []	
Mar [] Jul	[Nov (]	
Apr [] Aug	[]]	Dec []	Units:
WATER	TYPE [SG] ANN	TUAL TO	TAL [13226000]	Gallons
					40.6	Acre-feet
Remarks: [EST BY TWDB]		
Seller Code: []	Met	ered/Est:	[] A	ctivity Code:	[]
If purchased, Z RAW =[], Z T	REATED =[];		Connections:	53
Outside conn:	Pop serv	red:	Z	Connect	ions metered:	
<pre>% Connections: RES</pre>	COMM	IND	; E	FFLUENT (gal)	

internal and

. .

TWDB CODE:		SE SURVEY -	- MUNICIPAL	USERS ===================================			
THE ESTAT Stonegate	ES UTILITY CO.	*	* YEAR [19	92] SOURCE COUN SOURCE BAS	IN [19] 28 -[000]		
P.O. BOX			RESERVOIR				
SAN ANTON	IO, TEXAS	78	3279-1325	STATUS =			
				·			
Jan [553000] Мау	[1147	7000] Sep	[2132000]			
Feb [430000] Jun	[1523	3000] Oct	[2756000]			
Mar [·	903000] Jul	[273]	LOOO] Nov	[936000]			
Apr [946000] Aug	•	000] Dec	• •	Units:		
F- (WATER TYPE [SG	•	NUAL TOTAL	[16995000]			
		J		52.2			
Remarks: [1	1			
Seller Code:	۲۱۱ Me	tered/Est:	[2]	Activity Code	: []		
If purchased, Z RAW = [], Z TREATED = []; Connections: 68							
Outside conn: Pop served: Z Connections metered: 100							
Z Connections: RES 100 COMM IND ; EFFLUENT(gal)							
2 Connections: RES 100 COPPA IND ; EFFLOENT(gal)							

. •

1 || ||

69

())) || |

((1997)

TWDB CODE: [277575] BEXAR * * YEAR [1980] SOURCE COUNTY [015] FAIRCO WATER CO SOURCE BASIN [19] FAIR OAKS RANCH SYSTEM AQUIFER 28 -[334] P. O. BOX 4495 NUMBER WELLS [8] BOERNE, TEXAS 78006 Jan [1868450] May [2643300] Sep [5011900] Feb [1842150] Jun [7767600] Mar [2851100] Jul [10210500] Nov [3023300] Apr [2819600] Aug [6306100] Dec [2970500] Units: 156.7 WATER TYPE [SG] ANNUAL TOTAL [Seller Code: [If purchased, Z RAW =[], Z TREATED =[Outside conn: Pop served:		IPAL USERS				
FAIRCO WATER CO [SOURCE BASIN [19] FAIR OAKS RANCH SYSTEM [AQUIFER 28 -[334] P. O. BOX 4495 [NUMBER WELLS [8] BOERNE, TEXAS 78006 Jan [1868450] May [2643300] Sep [5011900] Feb [1842150] Jun [7767600] Oct [3740500] Mar [2851100] Jul [10210500] Nov [3023300] Apr [2819600] Aug [6306100] Dec [2970500] Units: WATER TYPE [SG] ANNUAL TOTAL [51055000] Gallons 156.7 Acre-feet Remarks: [Seller Code: [] Metered/Est: [] Activity Code: [] If purchased, Z RAW =[], Z TREATED =[];	TWDB CODE: [277575]	BEXAR				
FAIR OAKS RANCH SYSTEM [AQUIFER 28 -[334] P. O. BOX 4495 [NUMBER WELLS [8] BOERNE, TEXAS 78006 Jan [1868450] May [2643300] Sep [5011900] Feb [1842150] Jun [7767600] Oct [3740500] Mar [2851100] Jul [10210500] Nov [3023300] Apr [2819600] Aug [6306100] Dec [2970500] Units: WATER TYPE [SG] ANNUAL TOTAL [51055000] Gallons 156.7 Acre-feet Remarks: [Seller Code: [] Metered/Est: [] Activity Code: [] If purchased, Z RAW =[], Z TREATED =[];	* * YEAR	[1980] SOURCE COUNTY [015]				
P. 0. BOX 4495 BOERNE, TEXAS 78006 NUMBER WELLS [8] RESERVOIR [] Jan [1868450] May [2643300] Sep [5011900] Feb [1842150] Jun [7767600] Oct [3740500] Mar [2851100] Jul [10210500] Nov [3023300] Apr [2819600] Aug [6306100] Dec [2970500] Units: WATER TYPE [SG] ANNUAL TOTAL [51055000] Gallons 156.7 Acre-feet Remarks: [] Seller Code: [] Metered/Est: [] Activity Code: [] If purchased, Z RAW =[], Z TREATED =[]; Connections: 269	FAIRCO WATER CO	SOURCE BASIN [19]				
BOERNE, TEXAS 78006 RESERVOIR [] Jan [1868450] May [2643300] Sep [5011900] Feb [1842150] Jun [7767600] Oct [3740500] Mar [2851100] Jul [10210500] Nov [3023300] Apr [2819600] Aug [6306100] Dec [2970500] Units: WATER TYPE [SG] ANNUAL TOTAL [51055000] Gallons 156.7 Acre-feet Remarks: [] Metered/Est: [] Activity Code: []] Seller Code: [] Metered/Est: [] Activity Code: []] If purchased, Z RAW =[], Z TREATED =[]; Connections: 269	FAIR OAKS RANCH SYSTEM	[AQUIFER 28 -[334]				
BOERNE, TEXAS 78006 [STATUS = 0] Jan [1868450] May [2643300] Sep [5011900] Feb [1842150] Jun [7767600] Oct [3740500] Mar [2851100] Jul [10210500] Nov [3023300] Apr [2819600] Aug [6306100] Dec [2970500] Units: WATER TYPE [SG] ANNUAL TOTAL [51055000] Gallons 156.7 Acre-feet Remarks: [] Seller Code: [] Metered/Est: [] Activity Code: [] If purchased, Z RAW =[], Z TREATED =[]; Connections: 269	P. O. BOX 4495	NUMBER WELLS [8]				
Jan [1868450] May [2643300] Sep [5011900] Feb [1842150] Jun [7767600] Oct [3740500] Mar [2851100] Jul [10210500] Nov [3023300] Apr [2819600] Aug [6306100] Dec [2970500] Units: WATER TYPE [SG] ANNUAL TOTAL [51055000] Gallons 156.7 Acre-feet Remarks: [] Seller Code: [] Metered/Est: [] Activity Code: [] If purchased, Z RAW = [], Z TREATED = []; Connections: 269		RESERVOIR []				
Feb [1842150] Jun [7767600] Oct [3740500] Mar [2851100] Jul [10210500] Nov [3023300] Apr [2819600] Aug [6306100] Dec [2970500] Units: WATER TYPE [SG] ANNUAL TOTAL [51055000] Gallons 156.7 Acre-feet Remarks: [] Seller Code: []] Metered/Est: [] Activity Code: [] If purchased, Z RAW =[], Z TREATED =[]; Connections: 269	BOERNE, TEXAS 78006	STATUS = 0				
Feb [1842150] Jun [7767600] Oct [3740500] Mar [2851100] Jul [10210500] Nov [3023300] Apr [2819600] Aug [6306100] Dec [2970500] Units: WATER TYPE [SG] ANNUAL TOTAL [51055000] Gallons 156.7 Acre-feet Remarks: [] Seller Code: []] Metered/Est: [] Activity Code: [] If purchased, Z RAW =[], Z TREATED =[]; Connections: 269						
Mar [2851100] Jul [10210500] Nov [3023300] Apr [2819600] Aug [6306100] Dec [2970500] Units: WATER TYPE [SG] ANNUAL TOTAL [51055000] Gallons Is6.7 Acre-feet Remarks: [] Seller Code: [] Metered/Est: [] Activity Code: [] If purchased, Z RAW =[], Z TREATED =[];	Jan [1868450] May [2643300]	Sep [5011900]				
Apr [2819600] Aug [6306100] Dec [2970500] Units: WATER TYPE [SG] ANNUAL TOTAL [51055000] Gallons 156.7 Acre-feet Remarks: [] Seller Code: [] Metered/Est: [] Activity Code: [] If purchased, Z RAW =[], Z TREATED =[Feb [1842150] Jun [7767600] (Oct [3740500]				
WATER TYPE [SG]ANNUAL TOTAL [51055000]Gallons156.7Acre-feetRemarks: []Seller Code: []Metered/Est: []Activity Code: []If purchased, Z RAW = [], Z TREATED = [];	Mar [2851100] Jul [10210500]	Nov [3023300]				
156.7Acre-feetRemarks:]Seller Code:[]Metered/Est:[]Activity Code:[]If purchased, Z RAW = [], Z TREATED = [];Connections:269	Apr [2819600] Aug [6306100]	Dec [2970500] Units:				
Remarks:]Seller Code:]Metered/Est:[]Activity Code:[]If purchased, Z RAW = [], Z TREATED = [];Connections:269	WATER TYPE [SG] ANNUAL TO	TAL [51055000] Gallons				
Seller Code:[]Metered/Est:[]Activity Code:[]If purchased, Z RAW = [], Z TREATED = [];Connections:269		156.7 Acre-feet				
If purchased, Z RAW =[], Z TREATED =[]; Connections: 269	Remarks: []				
• • • •	Seller Code: [] Metered/Est: [] Activity Code: []				
• • • •						
ourside count: Lob served: Y connections mereled:						
<pre>% Connections: RES COMM IND ; EFFLUENT(gal)</pre>						

.

P

1

. .

(() ()

i I

CONSIGNED THE AND AND AND AND AND AND AND AND AND AND						
TWDB CODE: [277575]	BEXAR					
	* * YEAR [1990] SOURCE COUNTY	[015]				
FAIRCO WATER CO	SOURCE BASIN	[19]				
FAIR OAKS RANCH SYSTEM	AQUIFER 28	-[334]				
P. O. BOX 4495	NUMBER WELLS	[21]				
	RESERVOIR	[]				
BOERNE, TEXAS	78006 STATUS = 0	•				
Jan (12543900] May [21270000] Sep [22083800]					
Feb [11922100] Jun [39516300] Oct [19401100]					
Mar [11597100] Jul [27399400] Nov [13503500]					
Apr [12578500] Aug [27058000] Dec [15496900] U	nits:				
WATER TYPE [SG]	ANNUAL TOTAL [234370600] G	allons				
	719.3 A	cre-feet				
Remarks: [WELLS IN BEXAR (15) KEN	NDALL (5)]					
Seller Code: [] Meter	red/Est: [4] Activity Code: []				
If purchased, Z RAW = [], Z TREATED = []; Connections:						
Outside conn: 22 Pop served: 2000 Z Connections metered:						
Z Connections: RES COMM IND ; EFFLUENT(gal)						

.

ł

|| || ||

[

(| |

ľ

()

TWDB WATER USE	SURVEY - MUNICIPAL USERS	=							
TWDB CODE: [277575]	BEXAR								
	* * YEAR [1991] SOURCE COUNTY [015]								
FAIRCO WATER CO [SOURCE BASIN [19]									
FAIR OAKS RANCH SYSTEM AQUIFER 28 -[334]									
P. O. BOX 4495	NUMBER WELLS [23]								
	RESERVOIR []								
BOERNE, TEXAS	78006 STATUS = 0								
Jan (10012000) May (16601100] Sep [14136700]								
Feb [9644800] Jun [19988700] Oct [22160800]								
Mar [16518300] Jul [19509800] Nov [13343100]								
Apr [15101900] Aug [30436600] Dec [11968200] Units:								
WATER TYPE [SG]	ANNUAL TOTAL [199422000] Gallons								
	612.0 Acre-fee	t							
Remarks: [WELLS IN BEXAR (16) KENI	DALL(7)]								
Seller Code: [] Metere	ed/Est: [] Activity Code: []								
If purchased, Z RAW =[], Z TREA	ATED =[]; Connections: 856								
	: 2100 Z Connections metered: 100								
Z Connections: RES 99 COMM 1.0	IND ; EFFLUENT(gal) 2 3503817	0							

i.

•

		[293128]			* * YE	Δ Ω Γ'	1988	BEXAR		
FOR	EST GL	EN WATER CO				nn [.	1300	SOURCE BASI		
			NC					AQUIFER	N [19]	
C/O ROYAL SERVICES, INC. AQUIFER -[] P.O. BOX 28067 NUMBER WELLS []										
F.0	. DUA A	20007							່ງ	
					70000			RESERVOIR	- E - J	
SAN	ANTUN.	IO, TEXAS			78228			STATUS = 1		
Jan	1	4252000]	Мау	1	7972000]	Sep	1	80840001		
	ſ	5532000]	-	ſ	-	-	•	-		
	ſ	-		•				•		
Apr	ſ	6890000]		-	•		•	•	Units:	
	L	WATER TYP	-	-	ANNUAL		•	88529000]		
				•			Ľ	271.7		
Remarks:	[DROI	-ANNEXED BY	SAN	ANTO	10		ı			
	•	[866750]				1	•	Activity Code:	r 1	
		RAW =[Connections:		
-		-	-					tions metered:		
		RES 99 0	-			EFFL			100	

	SURVEY - MUNICIPAL USERS	**
TWDB CODE: [491820]	BEXAR	
	* * YEAR [1980] SOURCE COUNTY [015	-
LEON SPRINGS WATER SYSTEM	SOURCE BASIN [19]
BULVERDE UTILITY CO.	AQUIFER 28 -[334]
C/O JERRY BUCHER	NUMBER WELLS [4]
P.O. BOX 680099	RESERVOIR	i
SAN ANTONIO, TEXAS	78268-0099 STATUS = 0	-
Jan [1236500] May [1307100] Sep [2657000]	
Feb [1093000] Jun [3062000] Oct [1616000]	
Mar [1715600] Jul [5240000] Nov [1418000]	
Apr [1758000] Aug [3470000] Dec [1122700] Units:	
WATER TYPE [SG]	ANNUAL TOTAL [25695900] Gallons	
······································	78.9 Acre-fe	
Remarks: [1	
• • • • • • •	ed/Est: [] Activity Code: []	
If purchased, Z RAW = [], Z TREA		0
• • • •		U
•		
Z Connections: RES COMM	IND ; EFFLUENT(gal)	

•

[**]** [

() |-

(M

[[]]

ľ

ጥሪብ	R	CODE:	[491820	ונ							BEXAR			
		00021	[.1			* * V	EAR	· • • •	1 000	SOURCE	COID	JTV	[015]
11	ron	CODTNO	S WATE	o cv	C T FM				. [-		SOURCE			• •
			SILITY (DIEN									[19]
	. – .			.0.							AQUIFER 28 -[334]			
•		JERRY E								NUMBER WELLS [4]				
		BOX 68							RESERVO	RESERVOIR []				
SÆ	N	ANTONIC), TEXAS	5			78268	-00	99		STATUS	= (D	
-								_				<u> </u>		
J٤		[]	May	[]	Sep	[]		
Fe	Ъ	[]	Jun	[]	0ct	[]		
Me	r	[]	Jul]]	Nov	[]		
Ar	r	ĺ]	Aug	[]	Dec	[]	Uni	ts:
-		•	WATER	TYP	E	ĺ	ANNUAL	ΤO	TAL	Ĩ	2121200	001	Gal	lons
					•	•				•	65.	•		e-feet
lemarks	::	[EST E	Y TWDB							1		.=		
Seller		•	۱		Met	ter	ed/Est: [1	Ac	tivity (Code	: [1
		-	RAW =				•	1;	•		Connecti		-	239
f purchased, Z RAW =[], Z TR utside conn: Pop serve						•		Cor		ons mete				
	Connections: RES COMM									JENT (g			•	

ſ

ſ

1,00	CODE:	[491820	.1			*	* YE	AR [1991	BEXAR] SOURCE		YTY	[015]
LEO	N SPRIN	GS WATER	R SYST	EM				•		SOURCE			[19]
BUL	VERDE U	TILITY (.0							AQUIFE	R	28 -	[334]
C/0	JERRY	BUCHER					NUMBER	NUMBER WELLS [4]					
P.0	. BOX 6	80099								RESERV	OIR	I	j
SAN	ANTONI	O, TEXAS	5			78	3268-	0099		STATUS	= (D	
Jan	1		<u> </u>	ay	<u> </u>		1	Sep	1		<u>-</u> 1		
Feb			-	un	ř		i	Oct	-		i		
Mar	•			ul	i		i	Nov	i		i		
Apr			i A	ug	ì		i	Dec	í		i	Uni	ts:
	•	WATER	•	-	ì	ANI	UAL '	TOTAL	-	212868	00 j	Gal	lons
				•	•				•	65	.3	Acr	e-feet
Remarks:	[NO R	EPORT-TV	VDB ES	Т]				
Seller C	ode: []		Met	ter	ed/Est:	[]	A	ctivity	Code	:[}
If purch	ased, Ž	RAW =[],	χ 1	FRE	TED =[)	;		Connect	ions	:	240
•	Outside conn: Pop serv							Z Co	nnect	ions met	ered	:	
7 Connec	tions:	RES	COM	М		IND	:	EFFL	UENT (gal)			

. .

ſ

RECERCERCERCERCE TWDB WATER USE SURVEY - MUNICIPAL USERS									
TWDB CODE: [572850] BEXAR									
* * YEAR [1970] SOURCE COUNT	Y [015]								
MISSION CEMETERY CO. SOURCE BASIN	[19]								
MISSION BURIAL PARKS AQUIFER 28 -[080]									
C/O CEMETARY GROUNDS MANAGER NUMBER WELLS	[3]								
1700 SO. EAST MILITARY DR. RESERVOIR	[]]								
SAN ANTONIO, TEXAS 78214 STATUS = 0									
Jan [86100] May [167700] Sep [167700]									
Feb [86100] Jun [330900] Oct [167700]									
Mar [86100] Jul [330900] Nov [86100]									
Apr [167700] Aug [330900] Dec [86100]	Units:								
WATER TYPE [SG] ANNUAL TOTAL [2094000]	Gallons								
6.4	Acre-feet								
Remarks: [CITY OF SAN ANTONIO ALSO]									
Seller Code: [] Metered/Est: [] Activity Code:	[]]								
If purchased, Z RAW =[], Z TREATED =[]; Connections:									
Outside conn: Pop served: Z Connections metered:									
Z Connections: RES COMM IND ; EFFLUENT(gal)									

[]

1 |-| •

TWDB CODE: [572850]	SURVEY - MUNICIPAL USER	BEXAR
MISSION CEMETERY CO. Mission Burial Parks	* * YEAR [1990]	SOURCE COUNTY [015] Trim. Y SOURCE BASIN [19] Trim. Y AQUIFER 28 -[080]
C/O CEMETARY GROUNDS MANAGER 1700 SO. EAST MILITARY DR. SAN ANTONIO, TEXAS	78214	NUMBER WELLS [3] RESERVOIR [] STATUS = 0
Jan [861300] May [3756400] Sep [2989900]
Feb [992800] Jun [4795600] Oct [2224700
Mar [1681800] Jul [5998700] Nov [1288000]
Apr [2394500] Aug [4324900] Dec [801800] Units:
WATER TYPE ISC 1	ANNUAL TOTAL [32110400] Gallons
J Surfar worer	-	98.5 Acre-feet
Remarks: [OWN SW ALSO]	
	red/Est: [] Act	tivity Code: []
If purchased, Z RAW =[], Z TRI	EATED =[];	Connections:
Outside conn: Pop served		ons metered:
Z Connections: RES COMM	IND ; EFFLUENT(g	al)

•

·

•

•

(| | |

(|| || |

() [

नि<u>न्</u> | | |

M

1990

•

TWDB	CODE:	ſ 572850)]							BEXAR	
						*	* YE	AR []	1992		TY [015]
MISS	SION CEM	ETERY C	:0.					•		SOURCE BASI	• •
MISS	ION BUR	IAL PAR	KS							AQUIFER	28 -[080]
C/0	CEMETAR	Y GROUN	IDS 1	MANAG	ER	•				NUMBER WELL	• •
1700	SO. EA	ST MILI	TAR	Y DR.						RESERVOIR	r i
SAN	ANTONIO	, TEXAS	5			78	214			STATUS = 0	
							i				
Jan]]	May	[1440	000]	Sep]	1440000]	
Feb	[]	Jun	[1440	000]	0ct]	1440000}	
Mar	[]	Jul]	1440	000]	Nov]	1440000]	
Apr	ĺ]	Aug	[1440	000]	Dec	[1440000]	Units:
-	-	WATER	TYP	E [SG]	ANN	UAL	TOTAL]	11520000]	Gallons
										35.4	Acre-feet
Remarks:	[OWN S	URFACE	WAT	ER AL	SO]		
Seller Co	de: []		Met	ter	ed/Est:	[]		Activity Code:	[]]
If purcha	sed, Z	RAW =[], Z (TRE	ATED =[]	;		Connections:	
Outside d		-				:		X Cor	nnec	tions metered:	
Z Connect	ions: R	ES	C	OMM		IND	:	EFFL	JENT	(gal)	

ſ

ł

 .	TWDB (CODE :	=== TWDE [578053		ER U	SE S	SURVEY .				BEXAR		
* * YEAR [1990] SOURCE COUNTY [015] MOORE'S MOBILE HOME PARK SOURCE BASIN [19] ATTN: BOB MOORE, OWNER AQUIFER 28 -[000]										[19]			
		5 AQUE	•								NUMBER WEL	-	1]]
	BOERI	NE, TE	XAS				78	3006			STATUS =	0	
	Jan	[]]	May	[]) Sep) []		
	Feb	ĺ] .	Jun	[]] Oct]	Ĵ		
	Mar	[] .	Jul	[]] Nov	r []		
	Apr	[]	Aug	[]] Dec] :]	Unit	s :
			WATER	TYPE	[SG]	ANI	NUAL	TOTAL	• [876000] 2.7		ons -feet
Reman	rks:	1]			
Selle	er Coo	ie: []				ed/Est:	[2]		Activity Code	•]
Outsi	ide co	onn:	RAW =[RES 100	Pop	ser		ATED =[: IND	40			Connections tions metered (gal)		25

() (-(-

M

| | | |

.

TWDB CODE: [578053] * * YEAR [1991] SOURCE COUNTY [015] MOORE'S MOBILE HOME PARK SOURCE BASIN [19] ATTN: BOB MOORE, OWNER AQUIFER 28 -[000] 28075 AQUEDUCT NUMBER WELLS [1] BOERNE, TEXAS 78006 ISTATUS = 0 Jan] May] Sep Jan] Jun] Oct] Mar] Jul] Oct] Mar] Jul] Nov] Apr] Aug] Dec] Units: Remarks: [NO REPORT-TWDB EST]] [No refer]	THE WATER USE	SURVEY - MUNICIPAL USE	
MOORE'S MOBILE HOME PARKSOURCE BASIN[19]ATTN: BOB MOORE, OWNER AQUIFER 28 -[000]28075 AQUEDUCT NUMBER WELLS [1]BOERNE, TEXAS78006Jan [] May [] Sep []Feb [] Jun [] Oct []Mar [] Jul [] Nov []Apr [] Aug [] Dec [] Units:WATER TYPE [SG] ANNUAL TOTAL [840960] GallonsRemarks: [NO REPORT-TWDB EST]	TWDB CODE: [578053]		BEXAR
ATTN: BOB MOORE, OWNER AQUIFER 28 -[000] 28075 AQUEDUCT NUMBER WELLS [1] BOERNE, TEXAS 78006 Jan [] May [] Sep [] Feb [] Jun [] Oct [] Mar [] Jul [] Nov [] Apr [] Aug [] Dec [] Units: WATER TYPE [SG] ANNUAL TOTAL [840960] Gallons 2.6 Acre-feet		* * YEAR [1991] SOURCE COUNTY [015]
28075 AQUEDUCT NUMBER WELLS [1] BOERNE, TEXAS 78006 Jan [] May [] Sep [] STATUS = 0 Jan [] May [] Sep [] Feb [] Jun [] Oct [] Mar [] Jul [] Nov [] Apr [] Aug [] Dec [] WATER TYPE [SG] ANNUAL TOTAL [840960] Gallons 2.6 Acre-feet Remarks: [NO REPORT-TWDB EST]	MOORE'S MOBILE HOME PARK		SOURCE BASIN [19]
BOERNE, TEXAS 78006 RESERVOIR [] Jan [] May [] Sep [] Jan [] Jun [] Sep [] Feb [] Jun [] Oct [] Mar [] Jul [] Nov [] Apr [] Aug [] Dec [] Units: WATER TYPE [SG] ANNUAL TOTAL [840960] Gallons 2.6 Acre-feet Remarks: [NO REPORT-TWDB EST]	ATTN: BOB MOORE, OWNER		AQUIFER 28 -[000]
BOERNE, TEXAS 78006 STATUS = 0 Jan [] May [] Sep [] Jan [] Jun [] Oct [] Feb [] Jun [] Oct [] Mar [] Jul [] Nov [] Apr [] Aug [] Dec [] Units: WATER TYPE [SG] ANNUAL TOTAL [840960] Gallons 2.6 Acre-feet Remarks: [NO REPORT-TWDB EST]	28075 AQUEDUCT		NUMBER WELLS [1]
Jan [] May [] Sep [] Feb [] Jun [] Oct [] Mar [] Jul [] Nov [] Apr [] Aug [] Dec [] Units: WATER TYPE [SG] ANNUAL TOTAL [840960] Gallons 2.6 Acre-feet Remarks: [NO REPORT-TWDB EST]			RESERVOIR []
Feb [] Jun [] Oct [] Mar [] Jul [] Nov [] Apr [] Aug [] Dec [] Units: WATER TYPE [SG] ANNUAL TOTAL [840960] Gallons 2.6 Acre-feet Remarks: [NO REPORT-TWDB EST]	BOERNE, TEXAS	78006	STATUS = 0
Feb [] Jun [] Oct [] Mar [] Jul [] Nov [] Apr [] Aug [] Dec [] Units: WATER TYPE [SG] ANNUAL TOTAL [840960] Gallons 2.6 Acre-feet Remarks: [NO REPORT-TWDB EST]			<u> </u>
Mar [] Jul] Nov [] Apr [] Aug] Dec [] Units: WATER TYPE [SG] ANNUAL TOTAL [840960] Gallons 2.6 Acre-feet Remarks: [NO REPORT-TWDB EST]	Jan [] May [] Sep []
Apr [] Aug [] Dec [] Units: WATER TYPE [SG] ANNUAL TOTAL [840960] Gallons 2.6 Acre-feet Remarks: [NO REPORT-TWDB EST]	Feb [] Jun [] Oct []
WATER TYPE [SG]ANNUAL TOTAL [840960]Gallons2.6Acre-feetRemarks:[NO REPORT-TWDB EST]	Mar [] Jul [] Nov []
Remarks: [NO REPORT-TWDB EST 2.6 Acre-feet	Apr [] Aug [] Dec [] Units:
Remarks: [NO REPORT-TWDB EST]	WATER TYPE [SG]	ANNUAL TOTAL [840960] Gallons
			2.6 Acre-feet
	Remarks: [NO REPORT-TWDB EST]	
Seller Code: [] Metered/Est: [] Activity Code: []	Seller Code: [] Mete	ered/Est: [] A	ctivity Code: []
If purchased, Z RAW = [], Z TREATED = []; Connections: 24	If purchased, Z RAW =[], Z TR	REATED =[];	Connections: 24
Outside conn: Pop served: Z Connections metered:	Outside conn: Pop serve	ed: Z Connect	ions metered:
Z Connections: RES COMM IND ; EFFLUENT(gal)	Z Connections: RES COMM	IND ; EFFLUENT(gal)

. .

{

() |-

। | ||

(()))

(| |

(Maria

TWDB CODE: [61106		EY - MUNICIPAL USER	RS BREERERERERERERERERERERERERERERERERERER
NORTHWOOD HILLS U	TILITIES, INC.	* * YEAR [1990]	SOURCE BASIN [19]
ATTN: STEPHEN GRO ROUTE 7, BOX 777B	VE		AQUIFER 28 -[080] NUMBER WELLS [] RESERVOIR []
CANYON LAKE, TEXA	S	78133-4905	STATUS = 1
Jan [) May [] Sep []
Feb (] Jun [] Oct []
Mar (] Jul [] Nov []
Apr [] Aug [] Dec [] Units:
WATER	TYPE [SG]	ANNUAL TOTAL [] Gallons Acre-feet
Remarks: [DROP-NO LON	GER IN SERVICE]	
Seller Code: [] If purchased, Z RAW =[Outside conn: Z Connections: RES	Metered/Es], Z TREATED Pop served: COMM INI	=[]; Z Connect:	ctivity Code: [] Connections: ions metered: gal)

(

(¹⁹

[| |

() |-

1 1 1

(|-

(m) (

TWDB WATER USE	SURVEY - MUNICIPAL USERS
TWDB CODE: [617510]	BEXAR
	* * YEAR [1990] SOURCE COUNTY [015]
OAK HILL ACRES MH SUBD.	SOURCE BASIN [19]
C/OB&E WSC	AQUIFER 28 -[284]
ATTN: DOROTHY A. ESSEX	NUMBER WELLS []
8800 STARCREST 🖡 53	RESERVOIR []
SAN ANTONIO, TEXAS	78217 STATUS = 0
	1007001 505 [1651001
Jan [125700] May [199700] Sep [165100]
Feb [132800] Jun [197000] Oct [136300]
Mar [139600] Jul [238100] Nov [136300]
Apr [186700] Aug [183200] Dec [117600] Units:
WATER TYPE [SG]	ANNUAL TOTAL [1958100] Gallons
	6.0 Acre-feet
Remarks: []
Seller Code: [] Meter	ed/Est: [] Activity Code: []
If purchased, Z RAW =[], Z TRE	EATED =[]; Connections: 20
Outside conn: Pop served	
Z Connections: RES 95 COMM 5.0	

(

[]

Į I

ľ

	=== TWDB WATER USE	SURVEY - MUNICIPAL US	ERS aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
TWDB CODE:	[617510]		BEXAR
		* * YEAR [1992] SOURCE COUNTY [015]
OAK HILL A	CRES MH SUBD.		SOURCE BASIN [19]
С/О В & Е	WSC		AQUIFER 28 -[000]
ATTN: DORO	THY A. ESSEX		NUMBER WELLS [1]
8800 STARC	REST # 53		RESERVOIR []
SAN ANTONI	O, TEXAS	78217	STATUS = 0
		<u></u>	
Jan [104100] May [118900] Sep [141400]
Feb [113800] Jun [126300] Oct [125100]
Mar [99300] Jul [157300] Nov [3882400]
Apr [103900] Aug [165700] Dec [3993100] Units:
	WATER TYPE [SG]	ANNUAL TOTAL [9131300] Gallons
			28.0 Acre-feet
Remarks: []	
Seller Code: [] Mete	red/Est: [1]	Activity Code: []
If purchased, Z	RAW = [], Z TR	EATED =[];	Connections: 20
Outside conn:	Pop serve	d: 30 Z Connect	tions metered: 100
<pre>% Connections:</pre>	RES 95 COMM 5.	O IND ; EFFLUENT	(gal)

[

•

TWDB CODE: [374803		URVEY - MUNICIPA	L USERS	BEXAR	3886535568
HASKIN WATER SUPPL	Y. INC.	* * YEAR [•••	SOURCE COUNT Source basin	
OAKS NORTH MOBIL E	STATES			•	28 -[286]
C/O RONALD MAY P.O. BOX 791325			I	NUMBER WELLS RESERVOIR	5 [5]
SAN ANTONIO, TEXAS		78279-1325	•	STATUS = 0	LJ
Jan [853000] May [1441000] Ser	» [2443000]	
Feb (844000] Jun [1066000] Oct	: [864000 j	
Mar [763000] Jul [2069000] Nov	7 [834000]	
Apr [1038000] Aug [2003000] Dec	: [1011000]	Units:
WATER	TYPE [SG]	ANNUAL TOTAL	- [15229000]	Gallons
				46.7	Acre-feet
Remarks: []		
Seller Code: [] If purchased, Z RAW =[Metere], % TREA			<pre>ivity Code: onnections:</pre>	[] 148
Outside conn: % Connections: RES	Pop served: COMM		onnectio LUENT(ga	ns metered: 1)	

•

(())))

) |

{ (()))

m | |

1

(INTRO

(OAKS C/O				*	* YEAI	R [19	990]	SOURCE COUN SOURCE BASI AQUIFER NUMBER WELL RESERVOIR	N [19 28 -[286
-), TEXAS		78	279-1	325		STATUS = 0	L.
-	Jan	[2008000]	May [2329	0001	Sep	ſ	1930000]	
]	Feb	i	1503000]	• •	3058	-	0ct	ī	1952000 j	
1	Mar	i	1455000]	Jul [2547	000j	Nov	Ī	1477000]	
1	Apr	Ĩ	1676000]	Aug [2616	000j	Dec	Ī	1688000]	Units:
		-	WATER TY	PE [SG]	ANN	UAL TO	OTAL	[24239000]	Gallons
									74.4	Acre-fe
Remarl	ks:	[•]		
Selle:	r Coo	de: []	Meter	ed/Est:	[1]	Ac	tivity Code:	[]
If pu	rcha	sed, Z	RAW =[], Z TRE	ATED =[];		4	Connections:	25
Outsid	de co	onn:	Pe	op served	:		Z Conn	necti	ons metered:	100
Z Coni	nect	ions: H	RES 100 (COMM	IND	; 1	EFFLUI	ENT (g	al)	

. .

.

ſ

•

SECONDERESS TWDB WATER USE	SURVEY - MUNICIPAL USERS	
TWDB CODE: [374803]	BE	KAR
	* * YEAR [1992] SOUI	RCE COUNTY [015]
HASKIN WATER SUPPLY. INC.	ទ០បា	RCE BASIN [19]
OAKS NORTH MOBIL ESTATES	AQU:	IFER 28 - [286]
C/O RONALD MAY	I NUMI	BER WELLS [5]
P.O. BOX 791325	RESI	ERVOIR []
SAN ANTONIO, TEXAS	78279-1325 STA	TUS = 0
Jan [1591000] May [1705000] Sep [27]	72000]
Feb [1309000] Jun [13000]
Mar [1579000] Jul [••••	83000]
		06000] Units:
•••••••••		-
WATER TYPE [SG]	ANNUAL TOTAL [240]	77000] Gallons
Design for the		73.9 Acre-feet
Remarks: [J	
• •		ty Code: []
If purchased, Z RAW =[], Z TRE		ections: 262
Outside conn: Pop served	: Z Connections r	metered: 100
Z Connections: RES 100 COMM	IND ; EFFLUENT(gal)	

Ĺ

	888
TWDB CODE: [374815] BEXAR	
* * YEAR [1980] SOURCE COUNTY [01	5]
SCENIC HILLS WATER SUPPLY SOURCE BASIN [1]	9]
AQUIFER 28 - [31	9]
ATTN: MIKE STARK NUMBER WELLS	1 j
9818 SCENIC HILLS DRIVE RESERVOIR	i
SAN ANTONIO, TEXAS 78255 STATUS = 0	•
Jan [84000] May [142000] Sep [177000]	
Feb [77000] Jun [119000] Oct [69000]	
Mar (85000] Jul [211000] Nov [62000]	
Apr [73000] Aug [206000] Dec [65000] Units:	
WATER TYPE [SG] ANNUAL TOTAL [1370000] Gallon	S
4.2 Acre-f	
Remarks: [
Seller Code: [] Metered/Est: [] Activity Code: []	
	11
• • • • • •	**
•	
Z Connections: RES COMM IND ; EFFLUENT(gal)	

.

[

TWDB (CODE :	[374815	51						BEXAR		
		(*	* YE		1990		UNTY	[015]
SCENI	C HILL	S WATER	SUPPLY				•		SOURCE BA		[19]
									AQUIFER	28	-[319]
ATTN:	MIKE	STARK							NUMBER WE	LLS	[2]
9818	SCENIC	HILLS	DRIVE						RESERVOIR	. []
SAN A	NTONIO	, TEXAS	3		- 78	255			STATUS =	0	
Jan	[] May	7 []	Sep]]		
Feb	[] Jur	1 []	Oct]]		
Mar	[] Ju]	. []	Nov	[]		
Apr	[] Aug] 1]	Dec]]	Un	its:
		WATER	TYPE [S	G]	ANN	UAL	TOTAL	[2511800]	Ga	llons
									7.7	Ac	re-feet
Remarks:	[EST B	Y TWDB]			
Seller Cod	le: []	ŀ	lete:	red/Est:]]	A	ctivity Cod	e: []
If purchas	sed, 🗶 🛛	RAW =[], 2	TR	EATED =[]	;		Connection	S:	20
Outside co	onn:		Pop se	erve	1:		Z Co	nnect	ions metere	d:	
Z Connecti	ions: R	ES	COMM		IND	:	EFFL	UENT (gal)		

(. .

100

M

[|| ||

(()

		== TWD] [37481!		TER U	SE	SURVEY – MU	NI(CIPAI	LUS	ERS ====================================	***********
1	00021	[0/401.	-1			* * Y	EΔ1	R [1	1991		πν Γ Ω151
SCEN	IC HILI	LS WATE	r su	PPLY				K []	.,,1	SOURCE BASI	
ATTN	: MIKE	STARK								NUMBER WELL	• •
9818	SCENIC	HILLS	DRI	VE						RESERVOIR	
SAN	ANTONIC), TEXAS	5			78255				STATUS = 0	
Jan	[]	May	J]	Sep]]	
Feb	[]	Jun	[]	0ct]]	
Mar	[]	Jul	[]	Nov]]	
Apr	j]	Aug]]	Dec]	j	Units:
-	-	WATER	TYP	E [SG]	ANNUAL	T	OTAL	ĺ	1883400]	Gallons
				•	-				•	5.8	Acre-feet
Remarks:	[NO RE	PORT-TV	DB	EST]		
Seller Co	de: []		Me	ter	ed/Est: []	•	Activity Code:	[]
If purcha	sed, Z	RAW =[], 7	TRE	ATED =[];	-		Connections:	15
Outside c	onn:	-	Po	p ser	ved	:	-	Z Cor	nnec	tions metered:	
		RES		OMM						(gal)	

•

.

(| |

||-|-|____

1

		RVEY - MUNICIPAL U	
TWDB CODE: [783600]		BEXAR
		* * YEAR [198	0] SOURCE COUNTY [015]
SERENE HILLS SUBDI	VISION		SOURCE BASIN [19]
WATER SERVICES II			AQUIFER 28 -[319]
C/O RON MAY, PRES.			NUMBER WELLS [1]
P.O. BOX 791325			
SAN ANTONIO, TEXAS		78279-1325	STATUS = 0
Jan [360000) May [720000] Sep [360000]
Feb [360000] Jun [720000] Oct [360000]
Mar [360000] Jul [720000] Nov [360000]
Apr [360000] Aug [720000] Dec [360000] Units:
• •	TYPE [SG]	ANNUAL TOTAL	5760000] Gallons
	• •		17.7 Acre-feet
Remarks: [l	
Seller Code: []	Metered	/Est: []	Activity Code: []
If purchased, Z RAW =[]. Z TREAT	• •	Connections: 30
Outside conn:	Pop served:	•	ections metered:
Z Connections: RES	•	IND ; EFFLUEN	

.

· •

(jjm) |-|-

TWDB	CODE:	== TWDB WA [783600]	ATER U	SE :					RS ====================================	
WATH	ER SERVI		SION		*	* YE	AR [1	990]	SOURCE COUN SOURCE BASI AQUIFER	
P.0.	RON MAY BOX 79	1325							NUMBER WELL	t i
SAN	ANTONIO	, TEXAS			78	3279-3	1325		STATUS = 0	•
Jan	[249000]	May	[223	3000]	Sep	[198000]	
Feb	Ī	165000j	Jun	Ĩ	250	0000j	0ct	Ĩ	164000]	
Mar	Ī	157000]	Jul	Ī	179	9000 j	Nov	ĺ	150000]	
Apr	ĺ	167000]	Aug	Ī	. 188	3000 j	Dec	Ē	150000]	Units:
-	•	WATER TYI		Ĵ	ANN	IUAL !	TOTAL	Ĩ	2240000)	Gallons
			-					-	6.9	Acre-feet
Remarks:	[]		
Seller Co	ode: [1	Me	ter	ed/Est:	[2]	Ac	tivity Code:	[]]
If purcha	sed, X	RAW =[], 7 3	TRE	ATED -[·]	;		Connections:	• •
Outside o Z Connect	:onn:	Po	op serv COMM		-	-			ions metered: gal)	100

0

(i Maria

TWDB CODE: [783600]	RVEY - MUNICIPAL USERS
1.55 00551 [105000]	
SERENE HILLS SUBDIVISION	* * YEAR [1992] SOURCE COUNTY [015] SOURCE BASIN [19]
WATER SERVICES II	AQUIFER 28 -[319]
C/O RON MAY, PRES.	
P.O. BOX 791325	NUMBER WELLS [1] RESERVOIR []
SAN ANTONIO, TEXAS	78279-1325 STATUS = 0
Jan [188000] May [184000] Sep [359000]
Feb [129000] Jun [230000] Oct [294000]
Mar [172000] Jul [216000] Nov [269000]
Apr [169000] Aug [181000] Dec [221000] Units:
WATER TYPE [SG]	ANNUAL TOTAL [2612000] Gallons
	8.0 Acre-feet
Remarks: [1
Seller Code: [] Metered	<pre>/Est: [2] Activity Code: []</pre>
If purchased, Z RAW =[], Z TREAT	
Outside conn: Pop served:	
•	IND ; EFFLUENT(gal)
	,,,

| | |

() |

(im)

		CODE:	[374820			* * Y	EVD L	107			ากมากร	1015
на	577	N WATE	זססווס פ	Y. INC.		1	LAK [191		CE BA		
				SUBDIV.								[19]
				SUBDIV.					AQUI			-[286]
-		NALD								ER WI		[4]
Ρ.	0.	BOX 79	1325						RESE	RVOII	•	1
SA	N A	NTONIO	, TEXAS			78279	-1325		STAT	US =	0	
-			600750			750000				6500	-	
Ja		l	609750		•	750890	-	-		6530	-	
Fe	b	[398810	-	•	1271862	•	· [59	9670]	
Ma	r	[523350] Jul]	1574070] Nov	· [63	4430]	
Ap	r	[670560] Aug]	2067257] Dec]	59	4640] Un	its:
-		•	WATER	TYPE [SO		ANNUAL	TOTAL	Ì	1065	1819] Ga	llons
				•	•			•		32.7	Ac	re-fee
Remarks	:	ſ						1				
Seller	Cod	le: ſ	1	M	eter	ed/Est: [1	•	Activit	y Cod	de: [1
If purc	has	ed. Z	RAW =	1. Z	TRE	ATED =[];		Conne	-	-	73
Outside			L .	Pop set		-	-	nne	ctions m			
Z Conne			FC	COMM					T(gal)			

.

.

(Ute

ŗ

ſ

ſ

	E SURVEY - MUNICIPAL USER	
TWDB CODE: [374820]		BEXAR
	* * YEAR [1980]	
HASKIN WATER SUPPLY. INC.		SOURCE BASIN [19]
STAGE COACH HILLS SUBDIV.		AQUIFER 28 -[286]
C/O RONALD MAY		NUMBER WELLS [3]
P.O. BOX 791325		RESERVOIR []
SAN ANTONIO, TEXAS	78279-1325	STATUS = 0
Jan [970000] May [1767000] Sep [2862000]
Feb [893000] Jun	1182000] Oct [1101000]
Mar [983000] Jul	3272000] Nov [821000
Apr [985000] Aug [3809000] Dec [905000] Units:
WATER TYPE [SG	ANNUAL TOTAL [19550000] Gallons
•		60.0 Acre-feet
Remarks: [1	
Seller Code: [] Mete	ered/Est: [] Ac	tivity Code: []
If purchased, Z RAW = [], Z TH	• •	Connections: 110
Outside conn: Pop serve		ons metered:
Z Connections: RES COMM	IND ; EFFLUENT(g	

.

•

ſ

F

ſ.

Ê

TWDB CODE:	TWDB WATER U [374820]				BEXAR	
		×	* YEAR	[1990]	SOURCE COUN	TY [015]
HASKIN WAT	TER SUPPLY. INC.				SOURCE BASI	N [19]
STAGE COAC	CH HILLS SUBDIV.				AQUIFER	28 -[286]
C/O RONALI) MAY				NUMBER WELL	.S [3]
P.O. BOX 7	91325				RESERVOIR	[]
SAN ANTON	IO, TEXAS	7	8279-1325		STATUS = 0)
Jan [898000] May	[176	3000] Sej		1615000]	
Feb (947000] Jun	•	3000] Oc	•	1525000]	
Mar [899000j Jul	•	3000 Nov	v í	1057000	
Apr [952000] Aug	[266	9000] De	e i	1337000]	Units:
• •	WATER TYPE [SG	-	NUAL TOTAL	j J	19398000j	Gallons
	•	-		•	59.5	Acre-feet
Remarks: [1		
Seller Code:	l Me	etered/Est:	[1]	Ac	tivity Code:	۲ I
	RAW = [], Z		• •		Connections:	
Outside conn:					ons metered:	

•

. .

CONTRACTOR OF A CONTRACTOR OF A CONTRACT OF
TWDB CODE: [374820] BEXAR
* * YEAR [1992] SOURCE COUNTY [015]
HASKIN WATER SUPPLY. INC. [19]
STAGE COACH HILLS SUBDIV. [AQUIFER 28 -[286]
C/O RONALD MAY NUMBER WELLS [3]
P.O. BOX 791325 RESERVOIR []
SAN ANTONIO, TEXAS 78279-1325 STATUS = 0
Jan [944000] May [1190000] Sep [2330000]
Feb [741000] Jun [1578000] Oct [2074000]
Mar [1182000] Jul [2358000] Nov [1152000]
Apr [1348000] Aug [1798000] Dec [893000] Units:
WATER TYPE [SG] ANNUAL TOTAL [17588000] Gallons
54.0 Acre-feet
Remarks: []
Seller Code: [] Metered/Est: [2] Activity Code: []
If purchased, Z RAW =[], Z TREATED =[]; Connections: 128
Outside conn: Pop served: Z Connections metered: 100
Z Connections: RES 100 COMM IND ; EFFLUENT(gal)

· •

(| |

Į

TWDB WATER USE SURVEY - MUNI	CIPAL USERS
TWDB CODE: [374810]	BEXAR
* * YEA	R [1980] SOURCE COUNTY [015]
HASKIN WATER UTIL. INC.	SOURCE BASIN [19]
TIMBER WOOD PARK SUBDIV.	AQUIFER 28 -[319]
C/O EVELYN MILLER, BKPR.	NUMBER WELLS [1]
15403 CAPITOL PORT	
SAN ANTONIO, TEXAS 78249	STATUS = 0
Jan [164711] May [392796]	Sep [488030]
Feb [173490] Jun [898312]	Oct [387868]
Mar [318790] Jul [1101010]	Nov [266250]
Apr [518342] Aug [878023]	Dec [212140] Units:
WATER TYPE [SG] ANNUAL TO	
	17.8 Acre-feet
Remarks: []
Seller Code: [] Metered/Est: [] Activity Code: []
If purchased, Z RAW =[], Z TREATED =[];	Connections: 35
Outside conn: Pop served:	Z Connections metered:
Z Connections: RES COMM IND ; 2	EFFLUENT(gal)

.

()

(

I

.

100

•

189

TWDB WATER USE	SURVEY - MUNICIPAL USERS
TWDB CODE: [374810]	BEXAR
	* * YEAR [1990] SOURCE COUNTY [015]
HASKIN WATER UTIL. INC.	SOURCE BASIN [19]
TIMBER WOOD PARK SUBDIV.	AQUIFER 28 -[319]
C/O EVELYN MILLER, BKPR.	NUMBER WELLS [5]
15403 CAPITOL PORT	RESERVOIR []
SAN ANTONIO, TEXAS	78249 STATUS = 0
	·
Jan [2884000] May [5690000] Sep [4850000]
Feb [2856000] Jun [9542000] Oct [4318000]
Mar [3273000] Jul [5102000] Nov [3348000]
Apr [3440000] Aug [7548000] Dec [4316000] Units:
WATER TYPE [SG]	ANNUAL TOTAL [57167000] Gallons
	175.4 Acre-feet
Remarks: []
Seller Code: [] Meter	ed/Est: [1] Activity Code: []
If purchased, Z RAW =[], Z TRE	ATED =[]; Connections: 316
Outside conn: Pop served	: 948 Z Connections metered: 100
Z Connections: RES 98 COMM 2.0	IND ; EFFLUENT(gal)

•

(ind

() () ()

(MR)

1

(ing

| | |

ļ I

TWDB CODE: [374810]	SURVEY - MUNICIPAL USERS
14DB CODE: [574810]	* * YEAR [1992] SOURCE COUNTY [015]
HASKIN WATER UTIL. INC.	SOURCE BASIN [19]
TIMBER WOOD PARK SUBDIV.	AQUIFER 28 - [319]
C/O EVELYN MILLER, BKPR.	NUMBER WELLS [5]
15403 CAPITOL PORT	RESERVOIR []
SAN ANTONIO, TEXAS	78249 STATUS = 0
Jan [3543000] May [4396000] Sep [9891000]
Feb [3919000] Jun [3172000] Oct [7916000]
Mar [3927000] Jul [9016000] Nov [3947000]
Apr [4126000] Aug [5630000] Dec [4341000] Units:
WATER TYPE [SG]	ANNUAL TOTAL [63824000] Gallons
	195.9 Acre-feet
Remarks: []
Seller Code: [] Meter	ed/Est: [1] Activity Code: []
If purchased, Z RAW =[], Z TRE	TATED =[]; Connections: 435
Outside conn: Pop served	1: 1305 % Connections metered: 100
Z Connections: RES 98 COMM 2.0	IND ; EFFLUENT(gal)

()(99) |-|

TWDB CODE: [889163] BEXAR	
* * YEAR [1980] SOURCE COUN	TY [015]
U.S. ARMY/FORT SAM HOUSTON SOURCE BASI	N [19]
CAMP BULLIS WELLS AQUIFER	28 -[319]
AFZG-DE-EMENVIRONMENTAL OFFICE NUMBER WELL	.S [2]
ATTN: JERRY AGUIRRE RESERVOIR	[]]
FORT SAM HOUSTON, TEXAS 78234 STATUS = 0)
Jan [2907000] May [4791000] Sep [3667000]	
Feb [2633000] Jun [6261000] Oct [3117000]	
Mar [2954000] Jul [5120000] Nov [3296000]	
Apr [2894000] Aug [3841000] Dec [2688000]	Units:
WATER TYPE [SG] ANNUAL TOTAL [44169000]	Gallons
135.5	Acre-feet
Remarks: [MILITARY INSTALLATION]	
Seller Code: [] Metered/Est: [] Activity Code:	[]
If purchased, Z RAW = [], Z TREATED = []; Connections:	
Outside conn: Pop served: Z Connections metered:	:
<pre>% Connections: RES COMM IND ; EFFLUENT(gal)</pre>	

.

ľ

ſ

inere e

ŀ

	86288		TWDB	WATER U	JSE S	SURVEY -	MUNI	CIPAL	. US		
•	TWDB (CODE:	[889163]							BEXAR	
						* *	YEA	R []	.990) SOURCE COUN	TY [015]
	U.S.	ARMY /	FORT SAM	HOUSTON	1					SOURCE BASI	
		•	S WELLS		•						28 -[319]
			ENVIRON	MENTAL.	0773	CE				NUMBER WELL	• •
			Y AGUIRRE		VI I I					RESERVOIR	
			OUSTON, T			785	234			STATUS = 0	L J
	FURI	SAPI D	00510N, 1	eard		/02	5.34			1214102 - 0	
	Jan	[1764000]	Мау	[21840	0001	Sep	1	2121000]	
	Feb	ř	1806000]	•	ĩ	26450	•	Oct	í	2268000]	
	Mar	ſ	2499000]		•	25410	-		ĩ	2213000]	
	Apr	r	2352000]		•		-	Dec	•	2174000]	Units:
		L	WATER T	-	-		-	OTAL	r r	26919000]	Gallons
					. 1				L	82.6	Acre-feet
Remai	rke.	r							1	02.0	VCLG-TGEC
	er Coo	l Tor f	1	Ме	+	ed/Est:	[1	ı	3	Activity Code:	r 1
							-	-		Connections:	LJ
-			-	-		TED =[];				
	ide co			Pop ser	vea					tions metered:	
7 CA	nnecti	ions: 1	RES	COMM		IND	;	EFFLU	JENI	(gal)	

. . .

(MR)

ŀ

1

•

	TWDB	CODE:	[889163	1					BEXAR	
						* * YE	ak []	991	• •	• -
	U.S.	ARMY	/FORT SAM	HOUSTON					SOURCE BASI	N [19]
	CAMP	BULL	IS WELLS						AQUIFER	28 -[319]
	AFZG	-DE-E	MENVIRO	NMENTAL (OFF	ICE			NUMBER WELL	S [2]
	ATTN	: JER	RY AGUIRR	E					RESERVOIR	()
	FORT	SAM	HOUSTON,	TEXAS		78234			STATUS = 0	,
	Jan	[1932000		[3843000]	•	[5019000]	
	Feb	[1931000] Jun]	5229000]	0ct	1	5418000]	
	Mar	[2100000] Jul]	5277000]	Nov	I	5670000]	
	Apr	ſ	2540000] Aug]	5124000]	Dec	1	5819000]	Units:
	-	-	WATER	TYPE [SG	-	ANNUAL	TOTAL	ī	499020001	Gallons
				•	•			•	153.1	Acre-feet
Rema	rks:	1]		
Sell	er Co	de:	r 1	Me	ter	ed/Est: [1	-	Activity Code:	f 1
			Z RAW =[ATED =[]	:		Connections:	• •
-	ide c		L	Pop ser					tions metered:	

line (

ſ

Į

TWDB CODE: [889165] BEXAR * * YEAR [1980] SOURCE COUNTY [015] U.S. ARMY SOURCE BASIN [19] CAMP STANLEY-STORAGE ACT. RRAD AQUIFER 28 -[286] P.O. BOX 690627 NUMBER WELLS [5] SAN ANTONIO, TEXAS 78269 Jan [1811000] May [1765000] Feb [1771000] Jun [1799000] Mar [1715000] Jul [2430000] Mar [1715000] Jul [2430000] Mar [1505000] Aug [1888000] Mar [1715000] Jul [2430000] Mar [1715000] Jul [2430000] Mar [1715000] Jul [2430000] Mar [17000] Jul [2430000] Mar [1715000] Jul [2430000] Mar [17000] Jul [2430000] Seller Code: [] Metered/Est: [] Seller Code: [] Metered/Est: [] Metered/Est: [] Activity Code: []	REFERENCES STATER USE SURVEY - MUNICIPAL USERS	
U.S. ARMY CAMP STANLEY-STORAGE ACT. RRAD P.O. BOX 690627 SAN ANTONIO, TEXAS Jan [1811000] May [1765000] Sep [1557000] Feb [1771000] Jun [1799000] Oct [1487000] Mar [1715000] Jul [2430000] Nov [1422000] Apr [1505000] Aug [1888000] Dec [1768000] Units: WATER TYPE [SG] ANNUAL TOTAL [20918000] Gallons 64.2 Acre-feet Remarks: [MILITARY INSTALLATION] Seller Code: [] Metered/Est: [] Activity Code: [] If purchased, Z RAW =[], Z TREATED =[]; Connections: Outside conn: Pop served: Z Connections metered:	TWDB CODE: [889165] BEXAR	
CAMP STANLEY-STORAGE ACT. RRAD [AQUIFER 28 -[286]] P.O. BOX 690627 [AQUIFER 28 -[286]] SAN ANTONIO, TEXAS 78269 Jan [1811000] May [1765000] Sep [1557000] [RESERVOIR []] Feb [1771000] Jun [1799000] Oct [1487000] Mar [1715000] Jul [2430000] Nov [1422000] Apr [1505000] Aug [1888000] Dec [1768000] Units: WATER TYPE [SG] ANNUAL TOTAL [20918000] Gallons 64.2 Acre-feet Remarks: [MILITARY INSTALLATION] Seller Code: [] Metered/Est: [] Activity Code: [] If purchased, Z RAW =[], Z TREATED =[]; Connections: Outside conn: Pop served:	* * YEAR [1980] SOURCE COUNTY [01:	5]
P.O. BOX 690627 INUMBER WELLS [5] SAN ANTONIO, TEXAS 78269 Jan [1811000] May [1765000] Sep [1557000] Feb [1771000] Jun [1799000] Oct [1487000] Mar [1715000] Jul [2430000] Nov [1422000] Apr [1505000] Aug [1888000] Dec [1768000] Units: WATER TYPE [SG] ANNUAL TOTAL [20918000] Gallons 64.2 Acre-feet Remarks: [MILITARY INSTALLATION] Seller Code: [] Metered/Est: [] Activity Code: [] If purchased, Z RAW =[], Z TREATED =[]; Connections: Outside conn: Pop served:	U.S. ARMY SOURCE BASIN [19)j
SAN ANTONIO, TEXAS 78269 [RESERVOIR []] Jan [1811000] May [1765000] Sep [1557000] STATUS = 0 Jan [1811000] Jun [1799000] Oct [1487000] Feb [1771000] Jun [1799000] Oct [1487000] Mar [1715000] Jul [2430000] Nov [1422000] Apr [1505000] Aug [1888000] Dec [1768000] Units: WATER TYPE [SG] ANNUAL TOTAL [20918000] Gallons 64.2 Acre-feet Remarks: [MILITARY INSTALLATION] Seller Code: [] Metered/Est: [] Activity Code: [] If purchased, Z RAW =[], Z TREATED =[]; Connections: Outside conn: Pop served:	CAMP STANLEY-STORAGE ACT. RRAD AQUIFER 28 -[286	5 j
SAN ANTONIO, TEXAS 78269 [STATUS = 0 Jan [1811000] May [1765000] Sep [1557000] Feb [1771000] Jun [1799000] Oct [1487000] Mar [1715000] Jul [2430000] Nov [1422000] Apr [1505000] Aug [1888000] Dec [1768000] Units: WATER TYPE [SG] ANNUAL TOTAL [20918000] Gallons 64.2 Acre-feet Remarks: [MILITARY INSTALLATION]] Seller Code: [] Metered/Est: [] Activity Code: [] If purchased, Z RAW =[], Z TREATED =[]; Connections: Outside conn: Pop served: Z Connections metered:	P.O. BOX 690627 NUMBER WELLS [5	5]
Jan [1811000] May [1765000] Sep [1557000] Feb [1771000] Jun [1799000] Oct [1487000] Mar [1715000] Jul [2430000] Nov [1422000] Mar [1715000] Jul [2430000] Nov [1422000] Apr [1505000] Aug [1888000] Dec [1768000] Units: WATER TYPE [SG] ANNUAL TOTAL [20918000] Gallons 64.2 Acre-feet Remarks: [MILITARY INSTALLATION] Seller Code: [] Metered/Est: [] Activity Code: [] If purchased, Z RAW =[], Z TREATED =[]; Connections: Outside conn: Pop served: Z Connections metered:	RESERVOIR []
Feb [1771000] Jun [1799000] Oct [1487000] Mar [1715000] Jul [2430000] Nov [1422000] Apr [1505000] Aug [1888000] Dec [1768000] Units: WATER TYPE [SG] ANNUAL TOTAL [20918000] Gallons 64.2 Acre-feet Remarks: [MILITARY INSTALLATION] Seller Code: [] Metered/Est: [] Activity Code: [If purchased, Z RAW =[], Z TREATED =[]; Outside conn: Pop served: Z Connections metered:	SAN ANTONIO, TEXAS 78269 STATUS = 0	
Feb [1771000] Jun [1799000] Oct [1487000] Mar [1715000] Jul [2430000] Nov [1422000] Apr [1505000] Aug [1888000] Dec [1768000] Units: WATER TYPE [SG] ANNUAL TOTAL [20918000] Gallons 64.2 Acre-feet Remarks: [MILITARY INSTALLATION] Seller Code: [] Metered/Est: [] Activity Code: [If purchased, Z RAW =[], Z TREATED =[]; Outside conn: Pop served: Z Connections metered:		
Mar [1715000] Jul [2430000] Nov [1422000] Apr [1505000] Aug [1888000] Dec [1768000] Units: WATER TYPE [SG] ANNUAL TOTAL [20918000] Gallons 64.2 Acre-feet Remarks: [MILITARY INSTALLATION]] Seller Code: [] Metered/Est: [] Activity Code: [] If purchased, Z RAW =[], Z TREATED =[]; Connections: Outside conn: Pop served: Z Connections metered:	Jan [1811000] May [1765000] Sep [1557000]	
Apr[1505000]Aug[1888000]Dec[1768000]Units:WATER TYPE [SG]ANNUAL TOTAL[20918000]Gallons64.2Acre-feetRemarks:[MILITARY INSTALLATION]Seller Code:[]Metered/Est:[If purchased, Z RAW =[], Z TREATED =[];Connections:Outside conn:Pop served:Z Connections metered:	Feb [1771000] Jun [1799000] Oct [1487000]	
WATER TYPE [SG]ANNUAL TOTAL [20918000]Gallons64.2Acre-feetRemarks: [MILITARY INSTALLATION]Seller Code: []Metered/Est: []Activity Code: []If purchased, Z RAW = [], Z TREATED = [];Connections:Outside conn:Pop served:Z Connections metered:	Mar [1715000] Jul [2430000] Nov [1422000]	
64.2 Acre-feetRemarks: [MILITARY INSTALLATION]Seller Code: []Metered/Est: []Activity Code: []]If purchased, Z RAW = [], Z TREATED = [];Connections:Outside conn:Pop served:Z Connections metered:	Apr [1505000] Aug [1888000] Dec [1768000] Units:	
Remarks:[MILITARY INSTALLATION]Seller Code:[]Metered/Est:[If purchased, Z RAW =[], Z TREATED =[];Connections:Outside conn:Pop served:Z Connections metered:	WATER TYPE [SG] ANNUAL TOTAL [20918000] Gallons	3
Seller Code:[]Metered/Est:[]Activity Code:[]If purchased, Z RAW =[], Z TREATED =[];Connections:Outside conn:Pop served:Z Connections metered:	64.2 Acre-fe	et
If purchased, Z RAW =[], Z TREATED =[]; Connections: Outside conn: Pop served: Z Connections metered:	Remarks: [MILITARY INSTALLATION]	
Outside conn: Pop served: Z Connections metered:	Seller Code: [] Metered/Est: [] Activity Code: []	
Outside conn: Pop served: Z Connections metered:	If purchased, Z RAW =[], Z TREATED =[]; Connections:	
•		
Z CONNECTIONS: KES COMM IND ; EFFLUENT(gal)	<pre>% Connections: RES COMM IND ; EFFLUENT(gal)</pre>	

ſ

ſ

(10) (10)

1 ĺ

P

	TWDB		TWDB [889165	WATER U	JSE S	SURVEY ·	- MUN	ICIPAL	US	ERS ====================================	
	11120		[005105	·]		· *	* YE	AR [1	990		Y [015]
	U.S.	ARMY								SOURCE BASIN	• •
	CAMP	STANL	EY-STORA	GE ACT.	RRAI	D				AQUIFER 2	8 -[286]
	P.O.	BOX 69	0627							NUMBER WELLS	[5]
										RESERVOIR	ſ
	SAN A	ANTONIC), TEXAS	i		78	8269			STATUS = 0	
	Jan	[1100300)] May	1		2600]	•	ſ	1522600]	
	Feb	[880900)] Jun	1	1932	2500]	0ct	1	1334200]	
	Mar	[1138200)] Jul	I	175	5700]	Nov]	1135500]	
	Apr	Ī	1116000] Aug]	1236	5100]	Dec	[1065200]	Units:
	-	•	WATER	TYPE [SC		ANI	TUAL	TOTAL	Ī	15319800]	Gallons
				•	•				•	47.0	Acre-feet
Rema	rks:	ſ							}		
Sell	er Cod	de: (1	Me	eter	ed/Est:	[4]	-	Activity Code:	[]
		•	RAW =[ATED =[·)	:		Connections:	• •
	ide co		L	Pop ser		-			nec	tions metered:	
		ions: H	RES	COMM		IND	;	EFFLU			
										-	

•

.

•

P

ł.

TWDB CODE: [889165] BEXAR * * YEAR [1992] SOURCE COUNTY [015] U.S. ARMY SOURCE BASIN [19]
U.S. ARMY SOURCE BASIN [19]
CAMP STANLEY-STORAGE ACT. RRAD AQUIFER 28 -[286]
P.O. BOX 690627 [NUMBER WELLS [5]
RESERVOIR []
SAN ANTONIO, TEXAS 78269 STATUS = 0
Jan [3209500] May [813400] Sep [1394300]
Feb [930200] Jun [1297100] Oct [1988900]
Mar [896800] Jul [1303600] Nov [1386400]
Apr [943700] Aug [1454100] Dec [1366100] Units:
WATER TYPE [SG] ANNUAL TOTAL [16984100] Gallons
52.1 Acre-feet
Remarks: []
Seller Code: [] Metered/Est: [1] Activity Code: []
If purchased, Z RAW = [], Z TREATED = []; Connections: 15
Outside conn: Pop served: 150 % Connections metered:
Z Connections: RES 50 COMM IND 50 ; EFFLUENT(gal)

ľ

(() ()

(() ()

(

(|-

()

((

P

ſ

(| |

B. Surface Water Quality Records

• •

	·- 39	<u>ن</u> ا (۲۵)		الاست الاست الاست	
DW0322 1805.0050			• • • T E X A S W A T E R C STATEWIDE MONITORING NETWORK PERIOD OF REPORT: 01/01/ GUADALUPE RIVER BA DISTRICT OF	/88 TD 06/01/93 SIN	PAGE 00001
STATION ND. 1805.0050	SEGMENT - County - Station Canyon Lake	CANYON LAKE Comal Location At Canyon Dam	USGS GAGE ND West of San Marcos	RIVER MILE	INACTIVE LATITUDE / LONGITUDE 29 52 18 098 12 12
SAMPLE DATE		N SOURCE SYSTEM	PARAMETER MEASUREMENTS: VALUE/ /CODI		

		~										هيدي المحد	
	DW0322 1805.0100					STATEWIDE	ERIOD OF REP GUADALU	NETWORK S	D M M I S S I Sampling Data B8 to 06/01/9 Sin	INVENTORY		P	AGE 00002
	STATION NO. 1805.0100	CANYO	ATION	CANYON COMAL Locatio South DF Peni	N DF JACO	BS CREEK PAR	USGS GAGE I K 500	ND		RIVER MILE		ATITUDE / LON 3 52 30 098	GITUDE 13 09
÷	SAMPLE DATE	TIME		SOURCE Agency		PARAMETER M	EASUREMENTS:	VALUE/ /CODE	••••••	•••••••••••••			
\ \	03/09/88	1520	1.0	TEXAS	SMN	13.7 00010	108. 00077	430. 00094	10.4 00300	8.0 00400	182. 00410	14. 00530	2. 00535
\ 						< .02 00610	.4 00620	.3 00625	.02 00665	< .01 00671	2. 00680	16. 00940	20. 00945
,						< 2. 31616	< 2. 32211	< 2. 32218					
	03/09/88	1520	5.0	TEXAS	SMN	13.6 00010	429. 00094	10.2 00300	8.2 00400				
,	03/09/88	1520	10.0	TEXAS	SMN	13.4 00010	429. 00094	10.2 00300	8.2 00400				
/	03/09/88	1520	20.0	TEXAS	SMN	13.3 00010	429. 00094	10.2 00300	8.3 00400				
	03/09/88	1520	30.0	TEXAS	SMN	13.2 00010	429. 00094	10.2 00300	8.3 00400				
	03/09/88	1520	40.0	TEXAS	SMN	13.0 00010	429. 00094	10.2 00300	8.3 00400				
	03/09/88	1520	50.0	TEXAS	SMN	13.0 00010	429. 00094	10.2 00300	8.3 00400				
	03/09/88	1520	60.0	TEXAS	SMN	13.0 00010	429. 00094	10.2 00300	8.3 00400				
	03/09/88	1520	65.0	TEXAS	SMN	13.0 00010	428. 00094	10.2 00300	8.4 00400				
	03/09/88	1520	100.0	TEXAS	SMN	187. 00410	14. 00530	2. 00535	.02 00610	.43 00620	. 3 00625	.02 00665	.01 00671
						1. 00680	15. 00940	20. 00945	< 2. 31616				
	08/01/89	1100	1.0	TEXAS	SMN	WATER CI	LARITY GOOD	SURFACE SAM	PLE	•			
						28.0 00010	362. 00094	8.0 00300	8.0 00400	138. 00410	6. 00530	5. 00535	. 12 006 10
						< .01 00615	.02 00620	.2 00625	.019 00665	.011 00671	6. 00680	15. 00940	24. 00945

SYMBOL (•) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

•

DW0322 1805.0100					STATEWIDE	E MONITORING N PERIOD OF REPO	ETWORK S RT: 01/01/8 E RIVER BAS) M M I S S I C Sampling Data I 18 to 06/01/93 Sin	D N * * * INVENTORY			PAGE 00003
STATION ND. 1805.0100	CANYO	Y - ATION N LAKE	CANYON COMAL LOCATIO SOUTH I DF PENII	N DF JACOI	3S CREEK PAR	USGS GAGE N K 500	0		RIVER MILE		LATITUDE / 1 29 52 30 (LONGITUDE 098 13 09
SAMPLE DATE	TIME		SOURCE AGENCY		PARAMETER M	EASUREMENTS:	VALUE/ /CODE					
08/01/89	1100	1.0	TEXAS	SMN	< 1. 32211	1.8 32218						
08/01/89	1 100	5.0	TEXAS	SMN	28.0 00010	363. 00094	8.1 00300	8.1 00400				
08/01/89	1 100	10.0	TEXAS	SMN	28.0 00010	363. 00094	7.8 00300	8.1 00400				
08/01/89	1100	20.0	TEXAS	SMN	27.9 00010	362. 00094	8.0 00300	8.1 00400				
08/01/89	1 100	30.0	TEXAS	SMN	27.7 00010	361. 00094	7.8 00300	8.1 00400				
08/01/89	1 100	40.0	TEXAS	SMN	25.0 00010	380. 00094	1.8 +00300	7.9 00400				
08/01/89	1 100	50.0	TEXAS	SMN	17.3 00010	399. 00094	2.2 +00300	7.8 00400				
08/01/89	1 100	60.0	TEXAS	SMN	15.2 00010	397. 00094	2.9 +00300	7.8 00400				
08/01/89	1 100	65.0	TEXAS	SMN	14.6 00010	395. 00094	3.4 •00300	7.8 00400				
08/01/89	1 100	80.0	TEXAS	SMN	WATER S	AMPLE COLLECT	ED WITH VAN	DORAN SAMPLER	AT BO FT	OF WATER N	EAR BOTTOM	
					164. 00410	5. 00530	2. 00535	.07 00610	.01 00615	. 28 00620	.4 00625	.033 00665
					.024 00671	4. 00680	10. 00940	22. 00945				
08/20/90	1041	.7	TEXAS	SMN	28.5 00010	378. 00094	7.6 00300	8.1 00400				
08/20/90	1041	1.0	TEXAS	SMN	WATER C	LARITY GOOD W	ATER COLOR	LIGHT BLUE GRE	EN TOTAL DE	PTH 118 FT		
					3.50 00078	142. 00410	3. 00530	2. 00535	.04 00610	< .01 00615	< .01 00620	.027 00665
					010	2. 00680	15. 00940	19. 00945	4. 31616			

SYMBOL (+) DENDTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

DW0322

1805.0100

1

1

3

v 🖳 🧖

<u>____</u>

8

8

• • • T E X A S W A T E R C O M M I S S I O N • • • STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/88 TO 06/01/93 GUADALUPE RIVER BASIN DISTRICT 08

1

3

3

STATION ND. 1805.0100			N OF JACO	BS CREEK PARK	USGS GAGE NO)		RIVER MILE		FITUDE / LON 52 30 098	GITUDE 13 09
SAMPLE DATE	DEPT TIME (FT	H SOURCE) AGENCY	SYSTEM CODE	PARAMETER ME	ASUREMENTS:	VALUE/ /CODE					
08/20/90	1041 6.	6 TEXAS	SMN	378. 00094	7.1 00300	8.1 00400					
08/20/90	1041 9.	8 TEXAS	SMN	28.5 00010	378. 00094	7.1 00300	8.1 00400				
08/20/90	1041 16.	4 TEXAS	SMN	28.3 00010	378. 00094	7.0 00300	8.1 00400				
08/20/90	1041 23.	O TEXAS	SMN	28.1 00010	379. 00094	6.9 00300	8.1 00400				
08/20/90	1041 29.	5 TEXAS	SMN	27.8 00010	382. 00094	5.7 00300	8.0 00400				
08/20/90	1041 36.	1 TEXAS	SMN	27.6 00010	386. 00094	4.7 •00300	7.9 00400				
08/20/90	1041 42.	7 TEXAS	SMN	26.8 00010	389. 00094	2.3 +00300	7.8 00400				
08/20/90	1041 49.	2 TEXAS	SMN	25.7 00010	397. 00094	•00300	7.6 00400				
08/20/90	1041 55.8	B TEXAS	SMN	24.5 00010	404. 00094	•00300	7.6 00400				
08/20/90	1041 62.3	3 TEXAS	SMN	22.0 00010	402. 00094	. 1 +00300	7.5 00400				
08/20/90	1041 68.9	Ð TEXAS	SMN	20.7 00010	394. 00094	.0 •00300	7.5 00400				
08/20/90	1041 75.9	5 TEXAS	SMN	19.8 00010	394. 00094	.0 •00300	7.5 00400				
08/20/90	1041 116.0	D TEXAS	SMN	144. 00410	7. 00530	2. 00535	.04 006 10	< .01 00615	.09 00620	.034 00665	.010 00671
				3. 00680	14. 00940	17. 00945					

SYMBOL (•) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

PAGE 00004

1

) — J				3	
DW0322 1805.0100			NITORING NET OD OF REPORT	WORK SAMPL 1: 01/01/88 TO RIVER BASIN				. PA	GE 00005	
STATION NO. 1805.0100	SEGMENT - CANYON LAKI COUNTY - COMAL STATION LOCATION CANYON LAKE SOUTH OF J/ YARDS EAST OF PENINSUL/	U COBS CREEK PARK 5	SGS GAGE NO OO		R	IVER MILE		ITUDE / LONG 52 30 098	ITUDE 13 09	
PARAMETER 00010 00078 00300 00410 00535 00615 00625 00671 00940 31616 32218	DESCRIPTION: TEMPERATURE, WATER (DEC TRANSPARENCY, SECCHI DI OXYGEN, DISSOLVED (MG/I ALKALINITY, TOTAL (MG/I RESIDUE, VOLATILE NONFI NITRITE NITROGEN, TOTAI NITRITE NITROGEN, TOTAI NITROGEN, KJELDAHL, TOT PHOSPHORUS, DISSOLVED (CHLORIDE (MG/L AS CL) FECAL COLIFORM, MEMBR FI PHEOPHYTIN-A UG/L SPECT	SC (METERS)) AS CACO3) (LTRABLE (MG/L) (MG/L AS N) AL, (MG/L AS N) ORTHOPHOSPHORUS(MG LTER,M-FC BROTH,	#/100ML	PARAM 0007 0009 0040 0053 0061 0062 0066 0068 0094 3221	7 TRAN 4 SPEC 0 PH (0 RESI 0 NITR 0 NITR 5 PHDS 0 CARB 5 SULF	RIPTION: ISPARENCY, SE IFIC CONDUCT STANDARD UNI DUE, TOTAL NI OGEN, AMMONI ATE NITROGEN PHORUS, TOTAL ON, TOTAL OR ATE (MG/L AS ROPHYLL-A UG	ANCE,FIÈLD (TS) DNFILTRABLE A, TOTAL (MG/ L, WET METHO GANIC (MG/L SO4)	UMHDS/CM Ф 2 (Mg/l) /L AS N) L AS N) D (Mg/l AS P AS C))	
EFFECTIVE DATE	DEPTH SOURCE (FT) AGENCY	SEGMENT STANDA		, CODE						
10/01/67	1.0 TDWR	32. 00010H	90. 00011H	655.74 00095H	5. 00299L	5. 00300L	9. 00400H	6.5 00400L	40. 00940H	
		40. 00945H	200. 31616H	400. 70300н						

•

•

DW0322 1805.0200		• • • T E X A S W A T E R C O STATEWIDE MONITORING NETWORK SA PERIOD OF REPORT: 01/01/88 GUADALUPE RIVER BASI DISTRICT 08	TO 06/01/93	PAGE 00006
STATION NO. 1805.0200	SEGMENT - CANYON LAKE County - Comal Station Location Canyon Lake Mid-Lake South Narrowest Portion of Lake	USGS GAGE ND OF CANYON PARK IN	RIVER MILE	INACTIVE LATITUDE / LONGITUDE 29 53 12 098 14 51
SAMPLE Date	DEPTH SOURCE SYSTEM TIME (FT) AGENCY CODE	PARAMETER MEASUREMENTS: VALUE/ /CODE		

.

SYMBOL (*) DENDTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

DW0322					*** TEX	AS WA	TER COM	MISSIO	N * * *			PAGE	00007
1805.0300					STATEWIDE M	ONITORING N IOD OF REPO GUADALUP	ETWORK SAM RT: 01/01/88 E RIVER BASIN RICT OB	PLING DATA I To 06/01/93					
STATION NO. 1805.0300	CANYO	Y - ATION N LAKE		N	H OF POTTERS C	USGS GAGE N Reek	0	I	RIVER MILE		TITUDE / LO 53 45 Og)NGIT 98 16	
SAMPLE DATE	TIME			SYSTEM	PARAMETER MEA	SUREMENTS:	VALUE/ - /CODE -					, -	
03/09/88	1440	1.0	TEXAS	SMN	14.7 00010	53. 00077	438. 00094	10.0 00300	186. 00410	19. 00530	5. 00535		.03 006 10
					. 48 00620	.2 00625	.03 00665	.01 00671	2. 00680	16. 00940	21. 00945		2. 32211
					< 2. 32218								
03/09/88	1440	5.0	TEXAS	SMN	14.6 00010	438. 00094	9.9 00300						
03/09/88	1440	10.0	TEXAS	SMN	14.5 00010	440. 00094	9.9 00000	7.9 00400					
03/09/88	1440	20.0	TEXAS	SMN	14.3 00010	439. 00094	10.0 00300	8.0 00400					
03/09/88	1440	30.0	TEXAS	SMN	12.1 00010	432. 00094	9.6 00300	8.2 00400					
03/09/88	1440	40.0	TEXAS	SMN	11.6 00010	434. 00094	9.3 00300	8.2 00400					
03/09/88	1440	50.0	TEXAS	SMN	11.4 00010	434. 00094	9.1 00300	8.2 00400	187. 00410	17. 00530	5. 00535	<	.02 00610
					. 42 00620	.3 00625	.03 00665	< .01 00671	2. 00680	16. 00940	20. 00945	<	2. 31616
08/01/89	1300	1.0	TEXAS	SMN	SURFACE S	AMPLE WATER	CLARITY GOOD						
					29.0 00010	363. 00094	8.0 00300	8.1 00400	140. 00410	6. 00530	5. 00535		. 12 006 10
					.01 00615	.2 00625	.018 00665	.012 00671	3. 00680	13. 00940	27. 00945	<	1. 32211
					1.2 32218								
08/01/89	1300	5.0	TEXAS	SMN	29.0 00010	363. 00094	7.8 00300	8.1 00400					
08/01/89	1300	10.0	TEXAS	SMN	29.0 00010	363. 00094	7.7 00300	8.1 00400					

]		-	- F			r=~	3]	1	<u> </u>		<u> </u>	·	•	3	}
DW0322 1805.0300					STATE	WIDE	ERIOD O	IRING I IF REPI IADALU	ORT: (sk 's	AMPL: B to	I S S I ING DATA 06/01/9	A IN						PAGE	00008
STATION NO. 1805.0300	CANYO	Y - Ation N lake	CANYON Comal Locatio Mid-la T End O	N KE SOUTI	Н ОГ РОТ	TERS		GAGE	NO				R	IVER MILE			LATIT 29 53	UDE / LO 45 OS	INGIT 18 16	
SAMPLE DATE	TIME		SOURCE	SYSTEM CODE	PARAMET	ER ME		ENTS:	VAL	UE/ /CODE										
08/01/89	1300	20.0	TEXAS	SMN		8.7		365. 0094		7.2 00300		8.1 00400								
08/01/89	1300	30.0	TEXAS	SMN		8.1		372. 0094	•	5.0 •00300		8.0 00400								
08/01/89	1300	40.0	TEXAS	SMN		7.0		378. 20094		2.1 •00300		7.8 00400								
08/01/89	<u>1300</u>	50.0	TEXAS	SMN		2.4		386. 0094		. 1		7.8 00400								
08/01/89	1300	60.0	TEXAS	SMN	801	том 9	SAMLE A	T 60	FEET (COLLECT	ED W	TH VAN	DO	ORAN SA	MPLER					
						6.6 010		403. 0094		. 1 •00300		7.8 00400		170. 00410		15. 00530		6. 00535		.11 00610
					oc	.02 615	o	.05 0620		.3 00625		.021 00665		.014 00671		3. 00680		13. 00940		20. 00945
08/20/90	1000	3.0	TWCIS	SMN	ROT	ENONE	E OF CO	VE BY	TP&W	METHOD	OF (CAPTURE	2 CI	HANNEL CA	TFISH					
					< · 01	.2 004	o	.73)1149	<	.002 34680	<	.01 34682	<	.006 34685	<	.004 34686	<	.002 34687	<	.002 34688
					< 34	. 1 691	× ع	.002 9075	<	.01 39376	<	.006 39406	<	.04 39515	V	.066 71930	<	1.0 71936		.46 7 1937
					< 7 1	.4 939	۲ ۲	.2 1940		16. 74990		59. 74995		2. 81614		1. 81615	<	.03 8 1644		.03 8 1896
					< 81	.01 897	9	2. 8561												
08/2 <u>0</u> /90	1001	3.0	TWCIS	SMN	CAP	TURED	DURIN	IG ROT	ENONE	SAMPLI	NG OI	F COVE E	ВУ ТІ	P&W PERSO	NNEL I	ONE CYP	RINVS	CARPIO		
					oc	3.2 023	o	20.5 0024	<	.02 01004		.84 01149	<	.002 34680	<	.01 34682	<	.006 34685	<	.004 34686
					< . 34	002 687	< З	.002	<	. 1 3469 1	<	.002 39075	<	.01 39376	<	.006 39406	<	.04 39515		. 120 7 1930
			•		< 71	1.0 936	< 7	.64 1937	<	. 4 7 1939	<	. 2 7 1940		12. 74990		59. 74995		1. 81614		1. 81615

- 3

.

													I
9W0322 1805.0300					STATEWID		NETWORK S	8 TO 06/01/9	INVENTORY				PAGE 00009
STATION NO. 1805.0300	CANYO	ATION I	CANYON COMAL LOCATION MID-LAN T END ON	N KE SOUT	H OF POTTER	USGS GAGE S CREEK	ND		RIVER MILE			LATITUDE / L 29 53 45 (LONGITUDE 098 16 57
SAMPLE DATE	TIME		SOURCE AGENCY			MEASUREMENTS:							
08/20/90	1001	3.0	TWCIS	SMN	< .03 81644	.01 81896	< .01 81897	905. 84008	1. 98437				
08/20/90	1204	.7	TEXAS	SMN	29.6 00010	369. 00094	7.1 00300	8.1 00400					
08/20/90	1204	1.0	TEXAS	SMN	TOTAL I	DEPTH 90 FT W	ATER CLARITY	GOOD					
					1.75 00078	122. 00410	4. 00530	2. 00535	.20 00610	<	.01 00620	.029 00665	. 020 0067 1
					2. 00680	17. 00940	6. 31616	1.8 32211	0. 32218				
08/20/90	1204	3.3	TEXAS	SMN	29.4 00010	371. 00094	7.1 00300	8.2 00400					
08/20/90	1204	6.6	TEXAS	SMN	29.3 00010	372. 00094	7.0 00300	8.2 00400					
08/20/90	1204	9.8	TEXAS	SMN	29.2 00010	371. 00094	7.0 00300	8.2 00400					
08/20/90	1204	13.1	TEXAS	SMN	29.1 00010	372. 00094	6.9 00300	8.2 00400					
08/20/90	1204	16.4	TEXAS	SMN	28.9 00010	374. 00094	6.6 00300	8.1 00400					
08/20/90	1204	23.0	TEXAS	SMN	28.8 00010	374. 00094	6.7 00300	8.1 00400					
08/20/90	1204	29.5	TEXAS	SMN	28.6 00010	376. 00094	5.9 00300	8.1 00400					
08/20/90	1204	36.1	TEXAS	SMN	27.6 00010	413.	•00300	7.8 00400					
08/20/90	1204	42.7	TEXAS	SMN	26.6 00010	404. 00094	•00300	7.6 00400					
08/20/90	1204	49.2	TEXAS	SMN	25.5 00010	400. 00094	. 1 •00300	7.6 00400					
08/20/90	1204	55.8	TEXAS	SMN	23.7 00010	421.	.0 •00300	7.5 00400					

, y y	(3) ,	3)]			B	
DW0322 1805.0300						DE MONITORING Period of Rep Guadalu	NETWORK S		INVE	NTORY			PAGE 00010
STATION ND. 1805.0300	CANYO	Y - Ation In Lake	CANYON COMAL Locatio Mid-la T END O	N KE SOUT	H OF POTTEF	USGS GAGE RS CREEK	NO		RIV	ER MILE			LONGI TUDE 098 16 57
SAMPLE Date	TIME		SOURCE Agency		PARAMETER	MEASUREMENTS	VALUE/ /CODE						
08/20/90	1204	62.3	TEXAS	SMN	21.6 00010		.0 +00300	7.3 00400					
08/20/90	1204	68.9	TEXAS	SMN	20.9 00010		0. •00300•	7.3 00400					
08/20/90	1204	85.0	TEXAS	SMN	185 . 004 10		7. 00535	.55 00610	<	.01 00615	.01 00620	.037 00665	
					3. 00680								

SYMBOL (.) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

.

DW0322 1805.0300		* * * T E X Statewide MC Peri	GOADALOFL	ERCOMM WORKSAMPLI : 01/01/88 TO RIVER BASIN CTO8	I S S I 1 ING DATA 06/01/93	D N * * * Inventory		Ρ	AGE 00011
	SEGMENT - CANYON LAKE COUNTY - COMAL STATION LOCATION CANYON LAKE MID-LAKE SOU PARK AT WEST END OF PARH	L JTH OF POTTERS CR <	EEK				LAT 29	ITUDE / LON 53 45 098	GITUDE 1657
00024 00078 00300 00410 00535 00615 00625 00671 01004 31616 32218 34682 34682 34688 34688 39405 71930 71937 71940 74995 81615 81896 84008	TRANSPARENCY, SECCHI DIS OXYGEN, DISSOLVED (MG/L) ALKALINITY, TOTAL (MG/L) RESIDUE, VOLATILE NONFII NITRITE NITROGEN, TOTAL NITROGEN, KJELDAHL, TOT/ PHOSPHORUS, DISSOLVED OF CHLORIDE (MG/L AS CL) ARSENIC TOTAL IN FISH OF FECAL COLIFORM.MEMBR FII PHEOPHYTIN-A UG/L SPECTI CHLORDANE TOT (TECH MIX	ROPHOTOMETRIC ACI & METABS) TISS W JE WET WT UG/G SSUE, WET WEIGHT E WET WGT (UG/G) S WT WT BASIS (UG R ANIMAL-WET WEIG A ANIMAL-WET WEIG A ANIMAL-WET WEIG A STORET NUMERIC MPOSITE TISSUE SA WT UG/G EPA STORET NUMER	D. METH. HET UG/G	0009 00400 00530 00610 00620 00680 00944 01145 3221 34680 34680	0 AL	DRIN IN FISH T DRIN IN TISSUE	POUNDS CCHI DISC (I ANCE,FIELD (TS) ONFILTRABLE A. TOTAL (MG/ L. WET METHD GANIC (MG/L SO4) IN FISH OR A /L SPECTROPH ISSUE WET WT	NCHES) UMHOS/CM O (MG/L) //L AS N) L AS N) D (MG/L AS AS C) NIMALS WET DTOMETRIC A UG/G (MG/KG)	25C) P) Wgt Mg/kg CID. Meth
EFFECTIVE DATE 10/01/67	DEPTH SOURCE (FT) AGENCY 1.0 TDWR	SEGMENT STANDA	/C 90.	0DE	5.	5.	9.	6.5	40.
		000 10H 40. 00945H	00011H 200. 31616H	00095H 400. 70300H	00299L	00300L	00400H	00400L	00940H

DW0322

•

1

1805.0400

* * * T E X A S W A T E R C O M M I S S I O N * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/88 TO 06/01/93 GUADALUPE RIVER BASIN DISTRICT 08

~

STATION NO. 1805.0400	SEGMEN COUNTY Sta Canyon Cranes	TION I	CANYON COMAL LOCATIO HEADWA PARK		JVE	U	SGS GAGE	NO				RI	VER MILE		1	LATI 29 5	TUDE / L(4 33 09	DNGI 98 1	
SAMPLE DATE	TIME	DEPTH (FT)	SOURCE AGENCY	SYSTEM CODE	PARAMETER	MEAS	JREMENTS:	V	ALUE/ /CODE										
03/09/88	1239	1.0	TEXAS	SMN	16. 00010		24. 00077		482. 00094		9.3 00300		200. 004 10		38. 00530		5. 00535		.02 006 10
					. 60 00620		.3 00625		.03 00665	<	.01 00671		2. 00680		19. 00940		22. 00945	<	2. 31616
					3 322 1		2. 32218												
03/09/88	1239	5.0	TEXAS	SMN	15.9 0001		481. 00094		9.3 00300										
03/09/88	1239	10.0	TEXAS	SMN	15.9 00010		482. 00094		9.3 00300										
03/09/88	1239	15.0	TEXAS	SMN	15.1 00010		480. 00094		9.3 00300										
03/09/88	1239	20.0	TEXAS	SMN	14.3 00010		462. 00094		9.1 00300		7.8 00400								
03/09/88	1239	30.0	TEXAS	SMN	13.1 00010		466. 00094		8.1 00300		7.8 00400								
03/09/88	1239	34.0	TEXAS	SMN	15.1 00010		455. 00094		6.6 00300		7.7 00400		200. 00410		51. 00530		6. 00535		.05 00610
					.6: 00620		.4 00625		.05 00665	<	.01 00671		2. 00680		17. 00940		21. 00945	<	2. 31616
03/09/88	1239	41.0	TEXAS	SMN	72600 00490		1950. 00626		470. 00668		3.2 01003		62. 01008	<	.8 01028		8.0 01029		7.2 01043
					11 0105:		300. 01053		8.3 01068	<	.8 01078		31. 01093	<	1.1 01148	<	5.0 39061	<	3.0 39064
					< 3.(3906)		3.0 39073	<	1.0 39076	<	3.0 39301	<	3.0 39306	<	3.0 39311	<	3.0 39316	<	1.5 39321
					< 1.9 3932		1.0 39333	<	6.0 39351	<	6.0 39363	<	3.0 39368	<	6.0 39373	<	2.0 39383		3.0 39393
					< 50 39403		. 5 394 13	<	1.0 39423	<	10. 39481	<	20. 39519	<	5.0 39531	<	3.0 3954 1	<	5.0 39571
					< 3.0 3960		1.0 39701	<	50. 39731	<	10. 39741	<	10. 39761	<	1.0 39783		.024 7 192 1		

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

.

PAGE 00012

i

.

3

<u>المحمد :</u>

	[~~]	, recently	S9	3 ~~								
DW0322 1805.0400					STATEWIDE		IETWORK SA) TO 06/01/93	INVENTORY		P	AGE 00013
STATION NO. 1805.0400	CANYO	Y - ATION L			VE	USGS GAGE N	10		RIVER MILE		TITUDE / LON 54 33 098	GITUDE 1954
SAMPLE DATE	TIME		SOURCE AGENCY		PARAMETER N	EASUREMENTS:	VALUE/ /CODE					
08/01/89	1200	1.0	TEXAS	SMN	SURFACE	E SAMPLE WATER	TURBID		•			
					29.3 00010	367. 00094	7.8 00300	7.9 00400	146. 00410	7. 00530	3. 00535	.05 00610
					.01 00615	< .01 00620	.2 00625	.022 00665	.014 00671	3. 00680	13. 00940	25. 00945
					< 1. 32211	1.2 32218						
08/01/89	1200	5.0	TEXAS	SMN	29.3 00010	367. 00094	7.6 00300	8.0 00400				
08/01/89	1200	10.0	TEXAS	SMN	29.3 00010	367. 00094	7.6 00300	8.0 00400				
08/01/89	1200	20.0	TEXAS	SMN	29.0 00010	373. 00094	6.5 00300	8.0 00400				
08/01/89	1200	30.0	TEXAS	SMN	28.3 00010	403. 00094	1.0 +00300	7.8 00400				
08/01/89	1200	40.0	TEXAS	SMN	26.8 00010	397. 00094	1.0 +00300	7.7 00400				
08/01/89	1200	45.0	TEXAS	SMN	BOTTOM	SAMPLE TAKEN	WITH VAN DOR	RAN SAMPLER	•			
					184. 00410	12. 00530	4. 00535	. 30 006 10	.02 00615	.01 00620	.5 00625	.028 00665
					.023 00671	4. 00680	15. 00940	17. 00945				
08/20/90	1119	.7	TEXAS	SMN	29.6 00010	393. 00094	5.8 00300	7.9 00400				
08/20/90	1119	1.0	TEXAS	SMN	WATER C	CLARITY FAIR S	SUSPENDED SOL	IDS PRESENT	AND CAUSING T	URBIDITY		
					.75 00078	152. 00410	8. 00530	3. 00535	.03 00610	< .01 00615	.03 00620	.034 00665
					.020 00671	3. 00680	9. 00940	18. 00945	11. 31616	2.9 32211	0. 32218	

DW0322

.

1

4

1805.0400

3

• • • T E X A S W A T E R C O M M I S S I O N • • • STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/88 TO 06/01/93 GUADALUPE RIVER BASIN DISTRICT 08

3

<u>____</u>

7

1

<u>ل</u>

STATION ND. 1805.0400	CANYO	Y - ATION I	CANYON COMAL OCATION HEADWAT PARK	4	DVE	USGS GAGE 1	O		RIVER MILE	L A 29	TITUDE / LO 54 33 09	NGITUDE 8 19 54
SAMPLE DATE	TIME		SOURCE AGENCY	SYSTEM CODE	PARAMETER	MEASUREMENTS:	VALUE/ /CODE					
08/20/90	1119	3.3	TEXAS	SMN	29.3 00010		6.1 00300	8.0 00400				
08/20/90	1119	6.6	TEXAS	SMN	29.0 00010		6.2 00300	8.0 00400				
08/20/90	1119	9.8	TEXAS	SMN	28.9 00010		6.2 00300	8.0 00400				
08/20/90	1119	13.1	TEXAS	SMN	28.7 00010		5.9 00300	8.0 00400				
08/20/90	1119	16.4	TEXAS	SMN	28.7 00010	381. 00094	5.9 00300	8.0 00400				
08/20/90	1119	23.0	TEXAS	SMN	28.7 00010		5.9 00300	8.0 00400				
08/20/90	1119	29.5	TEXAS	5MN	28.7 00010	384. 00094	5.5 00300	8.0 00400				
08/20/90	1119	36.1	TEXAS	SMN	28.0 00010		.5 +00300	7.6 00400				
08/20/90	1119	42.7	TEXAS	SMN	26.8 00010	458. 00094	. 1 +00300	7.5 00400				
08/20/90	1119	45.0	TEXAS	SMN	200. 00410	22. 00530	4. 00535	. 23 006 10	.03 00615	. 38 00620	.034 00665	.010 00671
					3. 00680	9. 00940	12. 00945	-				
08/20/90	1119	49.2	TEXAS	SMN	24.6 00010	465. 00094	.0 +00300	7.4 00400				

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

PAGE 00014

ŝ.

ł

DW0322 1805.0400	STA1	GUAD	NG NETWORK Report: 01/01/ Alupe River Ba District ob	SIN	ATA INVENTORY 1/93		P	AGE 00015
	CANYON LAKE HEADWATERS ABOVE				RIVER MILE	29 (ITUDE / LON 54 33 098	19 54
DATE	• •	IGRADE) 25) 3) 4) 4) 5 N) 5 N) 6 MG/KG-N DRY WG 5 N) 6 MG/KG DRY WG 5 AS BA DRY WGT) 5 (MG/KG,DRY WG 5 (MG/KG,DRY WGT) 5 (MG/KG,DRY WGT) 5 (MG/KG,DRY WGT) 5 (MG/KG,DRY WGT) 5 (MG/KG,DRY WGT) 1 DEPDS. (UG/KG DRY 5 (UG/KG DRY SOLIDS) 5 (M DRY SOLI	/CODE 000		DESCRIPTION: TRANSPARENCY, SE SPECIFIC CONDUCT PH (STANDARD UNI LOSS ON IGNITION RESIDUE, VOLATIL NITRITE NITROGEN NITROGEN, KJELDA PHDSPHORUS, TOTA PHDSPHORUS, TOTA PHDSPHORUS, TOTA PHDSPHORUS, TOTA CADMIUM, TOTAL IN COPPER IN BOTTO CADMIUM, TOTAL IN COPPER IN BOTTOM SELENIUM IN BOTT SILVER IN BOTTOM CHLOROPHYLL-A UG PENTACHLOROPHENG CHLORDANE TRANS BHC ALPHA ISOMER O,P' DDT IN BOTTO CHLORDANE IN BOTTO O,P' DDE IN BOTTO CHLORDANE IN BOTTO DDE IN BOTTOM DE DIELDRIN IN BOTT HEPTACHLOR EPOXI PCSS IN BOTTOM D PARATHION IN BOT METHYL PARATHION SILVEX IN BOTTOM SILVEX IN BOTTOM SILVEX IN BOTTOM SILVEX IN BOTTOM MERCURY, TOT. IN			

DW0322 1904 - 0050	• • • T E X A S W A T E R C O Statewide Monitoring Network S Period of Report: 01/01/8 San Antonio River B District 08	88 TO 06/01/93 Basin	
STATION ND. 1904.0050	SEGMENT - MEDINA LAKE COUNTY - MEDINA USGS GAGE ND STATION LOCATION MEDINA LAKE AT MEDINA LAKE DAM, WEST OF SAN ANTONIO	RIVER MILE LATITUDE / LONGITUDE 29 32 15 098 56 00	
SAMPLE Date	DEPTH SOURCE SYSTEM PARAMETER MEASUREMENTS: VALUE/ TIME (FT) AGENCY CODE /CODE		

) , ~									
Dw0322 1904.0100					STATEWIDE	MONITORING ERIOD OF REP SAN ANT	NETWORK S	M M I S S I Ampling Data 18 to 05/01/9 Asin	INVENTORY			PAGE 00002
STATION ND. 1904.0100		Y - Ation	MEDINA MEDINA LOCATION NEAR RI	N		USGS GAGE	NO		RIVER MILE		ATITUDE / LO 9 33 32 09	NGITUDE 88 55 30
SAMPLE DATE	TIME	DEPTH (FT)	SOURCE AGENCY	SYSTEM CODE	PARAMETER M	EASUREMENTS:	VALUE/ /CODE					
08/18/88	1231	1.0	TEXAS	SMN	PERCENT	SATURATION	108.3					
					30.0 00010	385. 00094	8.24 00300	8.48 00400	123. 00410	< 5. 00530	< 5. 00535	< .02 006 10
					.01 00620	.01 00665	< .01 00671	4. 00680	12. 00940	44. 00945	4. 31616	2. 32211
	×				< 2. 32218							
08/02/89	1015	1.0	TEXAS	SMN	28.5 00010	393. 00094	7.6 00300	7.8 00400	128. 00410	4. 00530	2. 00535	. 15 006 10
					.05 00615	< .01 00620	.2 00625	.022 00665	.018 00671	7. 00680	16. 00940	52. 00945
					1. 31616	2.0 32211	3.6 32218	237. 70300				
08/02/89	1015	5.0	TEXAS	SMN	28.6 00010	394. 00094	7.6 00300	7.8 00400				
08/02/89	1015	10.0	TEXAS	SMN	28.5 00010	394. 00094	7.6 00300	7.8 00400				
08/02/89	1015	20.0	TEXAS	SMN	28.1 00010	395. 00094	7.3 00300	7.8 00400				
08/02/89	1015	30.0	TEXAS	SMN	27.5 00010	397. 00094	5.6 00300	7.8 00400				
08/02/89	1015	40.0	TEXAS	SMN	24.3 00010	409. 00094	.9 +00300	7.6 00400				
08/02/89	1015	50.0	TEXAS	SMN	17.3 00010	418. 00094	2.4 +00300	7.7 00400				
08/02/89	1015	60.0	TEXAS	SMN	15.4 00010	419. 00094	1.1 +00300	7.7 00400				
08/02/89	1015	65.0	TEXAS	SMN	14.6 00010	422. 00094	.2 +00300	7.6 00400				
08/13/90	1515	.7	TEXAS	SMN	28.7 00010	406. 00094	8.6 00300	8.2 00400				

्य

Dw0322 1904.0100					STATEWID	PERIOD	ORING OF REP AN ANT	TERC NETWORK Port:01/01/ Ionio River Strict of	SAMP '88 T Basi	0 06/01/93	INVE	* * * NTORY					PAGE	00003
STATION ND. 1904.0100	SEGME COUNT ST MEDIN	Y - ATION	MEDINA MEDINA Locatio Near R	N		USGS	GAGE	NO			RIV	'ER MILE				TUDE / LC 3 32 09	DNGIT 98 55	
SAMPLE DATE	TIME		SOURCE AGENCY		PARAMETER	MEASURE	MENTS	VALUE/ /CODI	:									
08/13/90	1515	1.0	TEXAS	SMN	100. 00410		3. 00530	2 0053		.04 00610	<	.01 00615	<	.01 00620		.01 00665	•	.01 00671
					2. 00680		9. 00940	60 0094		2. 31616	<	1. 32211	<	1. 32218				
08/13/90	1515	3.3	TEXAS	SMN	28.7 00010		404. 00094	8.9 00300		8.2 00400								
08/13/90	1515	6.6	TEXAS	SMN	28.5 00010		405. 00094	8.0 00300		8.2 00400								
08/13/90	1515	9.8	TEXAS	SMN	28.4 00010		405. 00094	8.0 00300		8.2 00400								
08/13/90	1515	16.4	TEXAS	SMN	28.2 00010		407. 00094	8.0 00300		8.2 00400								
08/13/90	1515	23.0	TEXAS	SMN	27.6 00010		421. 00094	5. 00300		8.0 00400								
08/13/90	1515	29.5	TEXAS	SMN	27.2 00010		426. 00094	3.3 *00300		7,9 00400								
08/13/90	1515	36.1	TEXAS	SMN	26.3 00010		431. 00094	. (+00300		7.7 00400								
08/13/90	1515	42.7	TEXAS	SMN	25.5 00010		437. 00094	+00300))	7.6 00400								
08/13/90	1515	52.5	TEXAS	SMN	24.0 00010		438. 00094	. (+00300		7.5 00400								
08/13/90	1515	62.3	TEXAS	SMN	20.1 00010		445. 00094	-0		7.5 00400								
08/13/90	1515	72.2	TEXAS	SMN	18.5 00010		454. 00094	. (•00300		7.4 00400								
08/13/90	1800	4.0	TWCIS	SMN	CAPTUR	ED TWO	CARP U	SING 150 FT	EXP	ERIMENTAL	GILL	NETS C	YPRIN	IUS CARP	10			
					18. 00024	<	.2 01004	.74 01149		.002 34680	<	.01 34682	<	.006 34685	<	.004 34686	<	.002 34687
					< .002 34688	<	. 1 34691	< .002 39075		.01 39376	<	.006 39406	<	.04 39515		. 126 7 1930	<	1.0 71936

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

DW0322 1904.0100				ONITORING N	ETWORK S RT: 01/01/8 NID RIVER B	M M I S S I O N AMPLING DATA INVEN 8 TO 06/01/93 ASIN	ITORY		PAGE 00004
STATION ND. 1904.0100		MEDINA LAKE Medina Location Near Red Cove		USGS GAGE N	0	RIVE	R MILE		TUDE / LONGITUDE 3 32 098 55 30
SAMPLE DATE		AGENCY CODE	PARAMETER MEA	SUREMENTS:	VALUE/ /CODE				•••••
08/13/90	1800 4.0	TWCIS SMN	.51 71937	< .4 7 1939	< .2 7 1940	12. 74990	59. 74995	1. 81614	. 1. < .03 81615 81644
			.05 81896	< .01 81897	905. 84008	1. 98437			

DW0322 1904.0100	•	* * T E X A Statewide Moi Perio	ASWAT NITORINGNET DD OF REPORT SAN ANTON DISTRI	IO KIVEK DADIN	ISS INGDAT 06/01/	I O N + + + TA INVENTORY 193		P	AGE 00005
STATION ND. 1904.0100	SEGMENT - MEDINA LAKE County - Medina Station Location Medina Lake Near Red Cove	U	SGS GAGE NO			RIVER MILE		ITUDE / LON 33 32 098	SITUDE 55 30
00945 01149 32211 34680 34685 34687 39376 39515 71930 71937 71940 74995	DESCRIPTION: TEMPERATURE, WATER (DEGREES SPECIFIC CONDUCTANCE,FIELD (PH (STANDARD UNITS) RESIDUE, TOTAL NONFLITRABLE NITROGEN, AMMONIA, TOTAL (MG/ PHOSPHORUS, TOTAL, WET METHO CARBON, TOTAL ORGANIC (MG/L SULFATE (MG/L AS SO4) SELENIUM, TOTAL IN FISH OR A CHLOROPHYLL-A UG/L SPECTROPH ALDRIN IN FISH TISSUE WET WI ENDRIN IN FISH TISSUE WET WI ENDRIN IN FISH TISSUE, U TOXAPHENE IN FISH TISSUE, UG/ DDT SUM ANALOGS IN TISSUE WE PCBS FISH TISSUE WET UG/G MERCURY, TOTAL IN FISH OR ANI CADMIUM, TOTAL IN FISH OR ANI CADMIUM, TOTAL IN FISH OR ANI CADMIUM, TOTAL IN FISH OR ANI CADMIUM, TOTAL IN FISH OR ANI CADMIUM, TOTAL IN FISH OR ANI CADMICAL PART, USE EPA STO NUMBER OF SPECIES IN COMPOSI DDE TOTAL IN TISSUE WET WI L LIFE CYCLE/HABITAT, USE EPA	CENTIGRADE) UMHDS/CM • 2 (MG/L) 2/L AS N) L AS N) D (MG/L AS P AS C) NIMALS WET W DTOMETRIC AC UG/G (MG/KG) G/G WET WT G WET WT T WT BASIS (1 MAL-WET WEIG MAL-WET WEIG RET NUMERIC (1 SALS-WEI SAL	5C)) GT MG/KG ID. METH UG/G) HT BASIS HT BASIS HT BASIS CODE MPLE	0002 00300 00411 0061 0062 0067 00940 0100 31610 32211 34681 34681 34681 34681 3907 39400 70300 71931 71931 71931 71931 8164	4	LEAD, TOTAL IN I CHROMIUM, TOT II FISH SPECIES. I NUMBER OF INDI METHOXYCHLOR II	IN INCHES VED (MG/L) TAL (MG/L AS CA ILE NONFILTRAB EN, TOTAL (MG/I DAHL, TOTAL, (M SSOLVED ORTHOP AS CL) IN FISH OR ANIM ,MEMBR FILTER, AS CL) IN FISH OR ANIMAL GIL SIN TISSUE, ER, TISSUE WET ORGANISMS WT FILTRABLE (DRII FISH OR ANIMAL V FISH OR ANIMAL SE EPA STORET IN FISH TISSUE.	ACO3) LE (MG/L) LAS N) MG/LAS N) MG/LAS N) MOSPHORUS(MM MALWET WGT M-FC BROTH, FOMETRICAC FABS) TISS WET WEIGHT WGT (UG/G) WT BASIS (UG/G) WT BASIS (UG/G) S-WET WEIGHT ALS-WET WEIGHT ALS-WET WEIGHT NUMERIC COI POSITE TISS UG/G WET WEI	G/L AS P) (MG/KG) M/100ML ID. METH. WET UG/G (MG/KG) G/G) MG/L T BASIS GHT BASIS DE JE SAMPLE
EFFECTIVE DATE		GMENT STANDA		/					
10/01/67	1.0 TDWR	31. 00010H 75. 00945H	88. 00011H 200. 31616H	655.74 00095н 400. 70300н	5.0 00299		9.0 00400H	6.5 00400L	50. 00940H

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

٠

•

	المرتجع ا		` }			(Angelen	<u>م</u>	3				B ·	3	<u> </u>) (3	
DW0322 1904.0200					STATEWIDE	ERIOD	TORING OF REP San Ant	ORT:	ORK SA 01/01/88 River Ba	M M I S S I Mpling Data TO 06/01/93 Sin	INVENTORY					PAGE	00006
STATION ND. 1904.0200		Y -	MEDINA Medina Locatio At Mor	1	FF	USG	S GAGE	NO			RIVER MILE				IUDE / LC 3 32 09	DNGIT 98 57	
SAMPLE DATE	TIME		SOURCE		PARAMETER M	EASURI	EMENTS:	V	ALUE/ /CODE			· · · · · · · · · · ·					
08/18/88	1156	1.0	TEXAS	SMN	PERCENT	SATU	RATION	98.6									
					30.4 00010		395. 00094		7.60 00300	8.42 00400	127. 00410	< 5 0053		<	5. 00535		.03 00610
					.02 00620		.01 00665	<	.01 00671	5. 00680	13. 00940	45 0094		<	10. 31616	<	2. 32211
					< 2. 32218												
08/02/89	1130	1.0	TEXAS	SMN	WATER CI	LARIT	y good	SLIG	HT TURBID	ITY SURFACE	S .AMPLE						
					28.8 00010		400. 00094		7.6 00300	8.0 00400	124. 00410	4 0053	ò		3. 00535		.03 00610
					. 05 006 15	<	.01 00620		.3 00625	.040 00665	.036 0067 1	4 0068	ò		16. 00940		62. 00945
					2. 31616	<	1. 32211		2.1 32218	245. 70300							
08/02/89	1130	5.0	TEXAS	SMN	29.1 00010		401. 00094		7.6 00300	8.0 00400							
08/02/89	1130	10.0	TEXAS	SMN	29.0 00010		400. 00094		7.5 00300	8.0 00400							
08/02/89	1130	20.0	TEXAS	SMN	28.0 00010		407. 00094		4.6 +00300	8.0 00400							
08/02/89	1130	30.0	TEXAS	SMN	26.9 00010		409. 00094		1.0 •00300	7.8 00400							
08/02/89	1130	40.0	TEXAS	SMN	24.4 00010		414. 00094		.1 •00300	7.7 00400							
08/02/89	1130	50.0	TEXAS	SMN	18.4 00010		433. 00094		.1 +00300	7.7 00400							
08/02/89	1130	60.0	TEXAS	SMN	16.0 00010		439. 00094		.1 •00300	7.6 00400							
08/02/89	1 1 30	65.0	TEXAS	SMN	15.7 00010		440. 00094		. 1 •00300	7.6 00400							

SYMBOL (•) DENDTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

•

1904.0200						PERIOD OF REPO SAN ANTO DIST	RT: 01/01/8 NIO RIVER B	8 TO 06/01/9:		NIORY				
STATION ND. 1904.0200	SEGME COUNT ST MEDIN	Y -	MEDINA MEDINA LOCATION AT MORI	N	FF	USGS GAGE N	0		RIV	ER MILE		L. 2	ATITUDE / LON 9 33 32 098	GITUDE 57 45
SAMPLE DATE	TIME		SOURCE		PARAMETER	MEASUREMENTS:	VALUE/ /CODE							
08/13/90	1426	.7	TEXAS	SMN	29.6 00010		7.9 00300	8.2 00400						
08/13/90	1426	1.0	TEXAS	SMN	110. 00410		2. 00535	.06 006 10	<	.01 00615	<	.01 00620	.02 00665	.01 00671
					2. 00680		60. 00945	2. 31616	<	1. 32211	<	1. 32218		
08/13/90	1426	3.3	TEXAS	SMN	29.3 00010		8.0 00300	8.2 00400						
08/13/90	1426	6.6	TEXAS	SMN	29.1 00010		8.1 00300	8.2 00400						
08/13/90	1426	9.8	TEXAS	SMN	29.0 00010		8.0 00300	8.2 00400						
08/13/90	1426	16.4	TEXAS	SMN	28.8 00010		7.5 00300	8.2 00400						
08/13/90	1426	19.7	TEXAS	SMN	28.7 00010		7.2 00300	8.0 00400						
08/13/90	1426	23.0	TEXAS	SMN	28.4 00010		4.8 +00300	8.0 00400						
08/13/90	1426	26.2	TEXAS	SMN	27.7 00010		2.3 +00300	7.8 00400						
08/13/90	1426	29.5	TEXAS	SMN	27.3 00010		.4 +00300	7.6 00400						
08/13/90	1426	36.1	TEXAS	SMN	26.1 00010		.0 •00300	7.6 00400						
08/13/90	1426	42.7	TEXAS	SMN	25.2 00010		.0 •00300	7.5 00400						
08/13/90	1426	46.6	TEXAS	SMN	24.6 00010		.0 +00300	7.5 00400						

* * * TEXAS WATER COMMISSION * * * Statewide Monitoring Network -- Sampling Data Inventory Period of Report: 01/01/88 to 06/01/93

PAGE 00007

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

.

DW0322

)				
DW0322 1904.0200			OD OF REPORT	ERCOMM WORKSAMPL OT/O1/88 TO RIVERBASIN CTO8	06/01/93			P/	AGE 00008
STATION ND. 1904.0200	SEGMENT - MEDINA LAKE County - Medina Station Location Medina Lake at Mormon Blui		ISGS GAGE NO		ı	RIVER MILE			3ITUDE 57 45
PARAMETER 00010 00300 00410 00535 00615 00625 00671 00940 31616 32218	DESCRIPTION: TEMPERATURE, WATER (DEGREI OXYGEN, DISSOLVED (MG/L) ALKALINITY, TOTAL (MG/L AS RESIDUE, VOLATILE NONFILTI NITRITE NITROGEN, TOTAL (I NITROGEN, KJELDAHL, TOTAL PHOSPHORUS, DISSOLVED ORTI CHLORIDE (MG/L AS CL) FECAL COLIFORM, MEMBR FILTI PHEOPHYTIN-A UG/L SPECTROM	S CACO3) Rable (Mg/l) Mg/l As N) , (Mg/l As N) Hophosphorus(Mg Er,M-FC Broth.	#/100ML	PARAM 0009 0040 0053 0061 0062 0066 0068 0094 3221 7030	4 SPEC 0 PH 0 RES 0 NITE 0 NITE 5 PHD 0 CARE 5 SULE 1 CHLC	CRIPTION: CIFIC CONDUCT (STANDARD UNIT IDUE, TOTAL NO ROGEN, AMMONI RATE NITROGEN Sphorus, Total Son, Total Or Fate (Mg/L As Drophyll-A Ug, IDUE,TOTAL FI	IS) DNFILTRABLE (MG, A. TOTAL (MG/I WET METHOS Ganic (Mg/L / Soa) Soa) /L Spectrophi	(MG/L) /L AS N) L AS N) D (MG/L AS I AS C) DTOMETRIC AG	P) CID. METH
EFFECTIVE DATE	DEPTH SOURCE (FT) AGENCY	SEGMENT STANDA		, CODE					
10/01/67	1.0 TDWR	31. 00010н 75. 00945н	88. 00011H 200. 31616H	655.74 00095н 400. 70300н	5.0 00299L	5.0 00300L	9.0 00400H	6.5 00400L	50. 00940H

SYMBOL (+) DENDTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

•

•

•

DW0322 1904 - 0300					STATEWIDE		IETWORK S	AMPLING DATA 8 to 06/01/9	INVENTORY					PAGE	E 00009
STATION NO. 1904.0300	SEGME COUNT ST MEDIN	Y - ATION	MEDINA MEDINA LOCATIO BETWEE	N	SS AND SPETT	USGS GAGE N EL COVES	10		RIVER MILE			LATI1 29 35	IUDE / L0 5 00 09	ONGI1 98 59	
SAMPLE DATE	TIME		SOURCE		PARAMETER M	EASUREMENTS	VALUE/ /CODE								
08/18/88	1132	1.0	TEXAS	SMN	PERCENT	SATURATION S	97.6						•		
					30.4 00010	405. 00094	7.40 00300	8.39 00400	130. 00410	<	5. 00530		3. 00535		.04 00610
					.02 00620	.01 00665	< .01 00671	3. 00680	12. 00940		46. 00945	<	2. 31616	<	2. 32211
					< 2. 32218										
08/02/89	1230	1.0	TEXAS	SMN	28.8 00010	407. 00094	7.1 00300	8.0 00400	134. 00410		10. 00530		4. 00535	<	.01 00610
					. 05 006 15	< .01 00620	.4 00625	.030 00665	. 023 0067 1		4. 00680		15. 00940		64. 00945
					< 10. 31616	1.7 32211	2.5 32218	268. 70300							
08/02/89	1230	5.0	TEXAS	SMN	28.8 00010	408. 00094	6.9 00300	8.0 00400							
08/02/89	1230	10.0	TEXAS	SMN	28.8 00010	407. 00094	6.6 00300	8.0 00400							
08/02/89	1230	20.0	TEXAS	SMN	28.8 00010	408. 00094	6.6 00300	8.0 00400							
08/02/89	1230	30.0	TEXAS	SMN	28.0 00010	413. 00094	2.6 •00300	7.8 00400							
08/13/90	1401	.7	TEXAS	SMN	30.1 00010	427. 00094	7.7 00300	8.2 00400							
08/13/90	1401	1.0	TEXAS	SMN	127. 00410	12. 00530	2. 00535	. 12 006 10	< .01 00615	<	.01 00620		.02 00665		.02 0067 1
					2. 00680	9. 00940	58. 00945	< 2. 31616	1.9 32211		0. 32218				
08/13/90	1401	3.3	TEXAS	SMN	30.0 00010	427. 00094	7.6 00300	8.2 00400							
08/13/90	1401	6.6	TEXAS	SMN	30.0 00010	428. 00094	7.3 00300	8.1 00400							

PAGE 00010

<u>.</u>

.

DW0322

.

1904.0300

- P

1

3

507

ń

1

• • • T E X A S W A T E R C O M M I S S I O N • • • STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/88 TO 06/01/93 SAN ANTONIO RIVER BASIN DISTRICT 08

}

B

1

- B

00000

🔹 I 🦳

N

STATION ND. 1904.0300	SEGMENT - COUNTY - STATIO MEDINA LA	N LO	AEDINA AEDINA DCATION BETWEEN)	S AND SPET	USGS GAGE ND FEL COVES			RIVER MILE	LATITUDE / LONGITUDE 29 35 00 098 59 06
SAMPLE DATE	DEP TIME (F	PTH S T) A	SOURCE AGENCY	SYSTEM CODE	PARAMETER	MEASUREMENTS:	VALUE/ /CODE			•••••
08/13/90	1401 9	9.8 1	EXAS	SMN	29.6 00010	427. 00094	7.3 00300	8.1 00400		
08/13/90	1401 13	3.1 1	EXAS	SMN	29.4 00010	426. 00094	7.1 00300	8.1 00400		
08/13/90	1401 16	5.4 1	TEXAS	SMN	29.4 00010	426. 00094	7.0 00300	8.1 00400		
08/13/90	1401 19	9.7 1	TEXAS	SMN	29.2 00010	429. 00094	6.7 00300	8.1 00400		
08/13/90	1401 21	1.3 1	TEXAS	SMN	29.1 00010	431. 00094	6.4 00300	8.0 00400		

										<u>ال</u> حصی
DW0322 1904.0300			NITORING NET	WORK SAMPLI : 01/01/88 TO O RIVER BASIN				P	AGE 00011	
STATION NO. 1904.0300	SEGMENT - MEDINA LAKE County - Medina Station Location Medina Lake Between Cype	US	SGS GAGE NO Coves		RI	VER MILE			GITUDE 59 06	
00300 00410 00535 00615 00625 00671 00674	DESCRIPTION: TEMPERATURE, WATER (DEG OXYGEN, DISSOLVED (MG/L ALKALINITY, TOTAL (MG/L RESIDUE, VOLATILE NONFI NITRITE NITROGEN, TOTAL NITROGEN, KJELDAHL, TOT PHOSPHORUS, DISSOLVED O CHLORIDE (MG/L AS CL) FECAL COLIFORM,MEMBR FI PHEOPHYTIN-A UG/L SPECT	REES CENTIGRADE) AS CACO3) LTRABLE (MG/L) (MG/L AS N) AL, (MG/L AS N) RTHOPHOSPHORUS(MG/ LTER,M-FC BROTH, A	#/ 100ML	PARAME 00094 00400 00530 00610 00660 00660 00660 00680 00945 3221 70300	4 SPECI 0 PH (S 0 RESID 0 NITRA 5 PHOSP 0 CARBO 5 SULFA 1 CHLOR	FIC CONDUCT STANDARD UNI DUE, TOTAL N DGEN, AMMONI DGEN, AMMONI TE NITROGEN PHORUS, TOTA NN, TOTAL OR TE (MG/L AS COPHYLL-A UG	DNFILTRABLE A, TOTAL (MG , TOTAL (MG/ L, WET METHO GANIC (MG/L	UMHDS/CM (P) (MG/L) /L AS N) L AS N) D (MG/L AS I AS C) DTOMETRIC A(P) CID. Meth	
EFFECTIVE DATE	DEPTH SOURCE (FT) Agency	SEGMENT STANDAR		ODE						
10/01/67	1.0 TDWR	31. 00010H	88. 00011H	655.74 00095H	5.0 00299L	5.0 00300L	9.0 00400H	6.5 00400L	50. 00940H	
		75. 00945H	200 <i>.</i> 3 16 16H	400. 70300H						

PAGE 00012

٠

لار م

• • • T E X A S W A T E R C O M M I S S I O N • • • STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/88 TO 06/01/93 SAN ANTONIO RIVER BASIN DISTRICT OB

/==

3

1-2

STATION ND. 1904.0400	SEGMEN COUNTY STA MEDINA	TION I	MEDINA MEDINA OCATION MID-LA	4	HEAI	DWATER	US	GS GAGE	NO				RIV	/ER MILE			.ATI1 29 37	TUDE / LC 7 48 09	NGI1 18 59	
SAMPLE DATE		DEPTH					MEASU	REMENTS	: `	VALUE/ /CODE										· · · · · · · · · · · · · · · · · · ·
08/18/88	1108	1.0	TEXAS	SMN		PERCEN	r sat	URATION	96.0	8										
						31.4 +00010		435. 00094		7.40 00300		8.36 00400		136. 00410		9. 00530		3. 00535	<	.02 006 10
						.01 00620		.01 00665	<	.01 00671		4. 00680		12. 00940		49. 00945		2. 31616		4. 32211
					<	2. 32218														
08/18/88	1 108	9.0	TEXAS	SMN		70300. 00496		790. 00557		1800. 00626		280. 00668		2.4 01003		32. 01008	<	.4 01028		7.1 01029
						10. 01043		6.4 01052		170. 01053	3	4.8 01068	<	.4 01078		16. 01093		.59 01148	<	5.0 39061
					<	3.0 39064	<	3.0 39067	<	3.0 39073		1.0 39076	<	3.0 39301	<	3.0 39306	<	3.0 39311	<	3.0 39316
					<	1.5 39321	<	1.5 39328	<	1.0 39333		6.0 39351	<	6.0 39363	<	3.0 39368	<	6.0 39373	<	2.0 39383
					<	3.0 39393	<	50. 39403	<	. E 394 13	j <	1.0 39423	<	10. 3948 1	<	20. 39519	<	1.0 39701	<	1.0 39783
						.024 7 192 1														
08/03/89	1330	1.0	TEXAS	SMN		28.6 00010		441. 00094		4.8 •00300		7.7 00400		156. 00410		57. 00530		7. 00535		18. 00610
						.05 00615	<	.01 00620		.e 00629		.025 00665		.022 00671		4. 00680		16. 00940		44. 00945
					<	10. 31616		2.5 32211	<	1. 32218		289. 70300								
08/03/89	1330	5.0	TEXAS	SMN		28.6 00010		442. 00094		4.7 •00300		7.7 00400								
08/13/90	1325	.7	TEXAS	SMN		28.9 00010		492. 00094		6.7 00300		8.0 00400								
08/13/90	1325	1.0	TEXAS	SMN		LAKE L	EVEL	LOWER T	HAN	NORMAL S	SAMPLE	S TAKEN	NEAR	LEOBOLDS	CAN	IPGROUND:	5			

SYMBOL (+) DENDTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

.

DW0322

1904.0400

- 2

DW0322	• • * T E X A S W A T E R C O M M I S S I O N • • • Statewide Monitoring Network Sampling data inventory	PAGE 00013
1904 . 0400	PERIOD OF REPORT: 01/01/88 TO 06/01/93 San Antonio River Basin District 08	

STATION ND. 1904.0400	SEGME COUNT ST MEDIN	Y -	MEDINA MEDINA LOCATIO MID-LA	N	HEADWATER	USGS GAGE NO)		RI	VER MILE				GITUDE 59 06
SAMPLE DATE	TIME		SOURCE AGENCY		PARAMETER	MEASUREMENTS:	VALUE/ /CODE							
08/13/90	1325	1.0	TEXAS	SMN	168 . 004 10		2. 00535	.07 006 10	<	.01 00615		.23 00620	.02 · 00665	.01 00671
					1. 00680		64. 00945	6. 31616	<	1. 32211	<	1. 32218		
08/13/90	1325	3.3	TEXAS	SMN	28.3 00010		6.5 00300	8.0 00400						
08/13/90	1325	6.6	TEXAS	SMN	26.9 00010		6.1 00300	7.9 00400						
08/13/90	1325	9.2	TEXAS	SMN	26.3 00010		5.9 00300	7.9 00400						

SEGMENT - MEDINA LAKE

	• • •	-							
DW0322 1904.0400		• • • T E X STATEWIDE MO PERI	ASWATI NITORING NET DD OF REPORT SAN ANTONI DISTRI		ISSIO Ng data i 06/01/93	N + + + NVENTORY	-	Ρ	AGE 00014
PARAMETER 00010 00300 00410 00530 00557 00615 00665 00665 00940 01003 01003 01028 01028 01043 01078 01078 01078 39061 39067 39076 39306 39316 39328 39328 39328 39351 39368 39368 39368 39368 39368 39368 393783 39423 39423 39423 39423 39423 39423 39423 39423	SEGMENT - MEDINA LAKE COUNTY - MEDINA STATION LOCATION MEDINA LAKE MID-LAKE NEA DESCRIPTION: TEMPERATURE, WATER (DEGR OXYGEN, DISSOLVED (MG/L) ALKALINITY, TOTAL (MG/L RESIDUE, TOTAL NONFILTRA OIL & GREASE (FREON EXTR NITRITE NITROGEN, TOTAL NITROGEN, KJELDAHL, TOTAL NITROGEN, KJELDAHL, TOTAL PHOSPHORUS, DISSOLVED OF CHLORIDE (MG/L AS CL) ARSENIC IN BOTTOM DEPOSI CADMIUM, TOTAL IN BOTTOM COPPER IN BOTTOM DEPOSI SELENIUM IN BOTTOM DEPOSI SELENIUM IN BOTTOM DEPOSI SELENIUM IN BOTTOM DEPOSI CHLOROPHYLL-A UG/L SPECT PENTACHLOROPHENDL IN BOT CHLORDANE TRANS ISOMER E BHC ALPHA ISOMER, BOTTOM O,P' DDT IN BOTTOM DEPOSI O,P' DDT IN BOTTOM DEPOSI O,P' DDT IN BOTTOM DEPOSI CHLORDANE IN BOTTOM DEPOSI O,P' DDT IN BOTTOM DEPOSI DDE IN BOTTOM DEPOSI CHLORDANE IN BOTTOM DEPOSI O,P' DDT IN BOTTOM DEPOSI DE IN BOTTOM DEPOSI DE IN BOTTOM DEPOSI SILVER IN BOTTOM DEPOSI O,P' DDT IN BOTTOM DEPOSI DE IN BOTTOM DEPOSI DE IN BOTTOM DEPOSI DE IN BOTTOM DEPOSI DE IN BOTTOM DEPOSI DEPOSITOM DEPOSI DE IN BOTTOM DEPOSI DEPOSITOM DEPOSITS LINDANE IN BOTTOM DEPOSI DEPOSITOM DEPOSITS LINDANE IN BOTTOM DEPOSITS	RE HEADWATER REES CENTIGRADE) AS CACO3) BLE (MG/L) RGRAV METH),BOT (MG/L AS N) AL, (MG/L AS N) AL, (MG/L AS N) AL, (MG/L AS N) AL, (MG/L AS N) AL, (MG/KG AS N) AL, (MG/KG AS AS N) AL, (MG/KG AS AS CU D) AL, (MG/KG AS AS D) A	. DEPOS.) /L AS P) DRY WGT) DRY WGT) RY WGT) RY WGT) DRY WT) ID. METH DRY SOL. G/KG DRY Y SOLIDS OLIDS) LIDS) QLIDS) RY SOL.) DRY SOL. RY SOL.) DRY SOL. S) LIDS) DRY WGT PDS: VALUE/	PARAMI 00094 00400 0053 00620 00945 01000 331611 33930 33931 33932 33933 33937 33948 33970	TER DES SPE SPE PH LOS NIT NIT NIT NIT NIT NIT SUL BAR LEA LEA PHE PHE P.P P.P P.P P.P DDD DDD RES	CRIPTION: CIFIC CONDUCT/ (STANDARD UNI) S ON IGNITION, IDUE, VOLATILI ROGEN, AMMONI/ RATE NITROGEN, ROGEN,ORG, KJI SPHORUS,TOTAL BON, TOTAL ORC FATE (MG/L AS IUM IN BOTTOM DI AL COLIFORM,MI ORDANE (MG/L AS IUM IN BOTTOM DI AL COLIFORM,MI ORDANE NONACHI ORDANE NONACHI ORDANE NONACHI 'DOT IN BOTTOM DDE IN BOTTOM DDE IN BOTTOM DDE IN BOTTOM IN BOTTOM DEI RIN IN BOTTOM IN BOTTOM DEI RIN IN BOTTOM IN BOTTOM DEI RIN IN BOTTOM TACHLOR IN BOT HOXYCHLOR IN BO ACHLOROBENZENI IDUE,TOTAL FII	29 ANCE,FIELD (TS) BOTTOM DEP NONFILTRAB A, TOTAL (MG/ EL.,BOT. DEP ,BOTTOM DEP GANIC (MG/L SO4) DEPOSITS (MG/ BOTTOM DEPO EPOSITS (MG/ EMBR FILTER, SPECTROPHO	UMHOS/CM P POSITS (MG/K BLE (MG/L) S/L AS N) POS. (MG/KG- POSIT (MG/KG AS C) NG/KG AS BA POSITS (MG/KG VG AS PB DR POSITS (MG/KG VG AS ZN DR M-FC BROTH, PTOMETRIC AC	59 06 25C) G) N DRY WGT DRY WGT) DRY WGT) Y WGT) ,DRY WGT) Y WGT) WGT) W/100ML ID. METH.
	1.0 TDWR	00010H	88. 00011H			5.0 00300L	9.0 00400H	6.5 00400L	50. 00940H

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

_

DW0322 1907 - 0200			* * S1	TATEWIDE	MONITORING ERIOD OF REP SAN ANT	NETWORK		INVENTOR	* • Y	PA	GE 00001	
STATION ND. 1907.0200	LEON CREEK	AT NORTH F	M 1604 I					RIVER M	ILE		1TUDE 36 00	
SAMPLE DATE	DEPTH TIME (FT)		DE	AMETER MI	EASUREMENTS	VALUE/	E			 		

•

.

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

•

DW0322 1907.0300	•	• • T E X A S W A T E R C O STATEWIDE MONITORING NETWORK S PERIOD OF REPORT: 01/01/8 SAN ANTONIO RIVER B DISTRICT OB	8 TO 06/01/93	PAGE 00002
STATION ND. 1907.0300	SEGMENT - UPPER LEON CREE COUNTY - BEXAR STATION LOCATION LEON CREEK UPSTREAM SIDE O BULLIS ROAD AND MILITARY HW	USGS GAGE ND F Bridge on Camp	RIVER MILE	INACTIVE LATITUDE / LONGITUDE 29 37 30 098 36 00
SAMPLE DATE	DEPTH SOURCE SYSTEM P TIME (FT) AGENCY CODE -	ARAMETER MEASUREMENTS: VALUE/ /CODE		

1907.0330						DNITORING N IOD OF REPO San Anto	TERCO NetworkSa DRT:01/01/88 DNIORIVERBA TRICT08	TO 06/01/93	INVENTORY		Ρ	PAGE 00003
TATION NO. 1907.0330	LEON	Y -		N		USGS GAGE N Low	40		RIVER MILE		TITUDE / LON 37 55 098	IGITUDE 1 36 32
SAMPLE DATE	TIME	DEPTH (FT)	SOURCE AGENCY	SYSTEI CODE	M PARAMETER MEAS		VALUE/ /CODE					
01/12/88	0900		TEXAS		NO FLOW							
					0. 0006 1	1. 01351						•
08/02/88	0830	1.0	TEXAS	SMN	NO FLOW. N	NO SAMPLES	COLLECTED.					
					0. 00061	1. 01351						
02/23/89	0847	UNSP	TEXAS	SMN	NO FLOW. M	NO SAMPLE T	TAKEN.					
					1. 01351	0. 74069						
05/09/90	1500	1.0	TEXAS	SMN	25.5 00010	13. 00061	600. 00094	10.6 00300	7.8 00400	204. 00410	5. 00530	2. 00535
					.01 006 10	< .01 00615	. 20 00620	.050 00665	.034 00671	4. 00680	17. 00940	56. 00945
					3. 01351	12. 31616	5.2 32211	2.1 32218	3.0 74069			
06/05/91	1530	.5	TEXAS	SMN	WATER CLE	AR - THICK	GROWTH OF FI	LAMENTOUS AL	GAE - MINNDWS	PRESENT		
					31.5 00010	. 67 0006 1	850. 00094	12.0 00300	8.0 00400	243. 00410	1. 00530	1. 00535
					. 06 006 10	.01 00615	.01 00620	.01 00665	.01 00671	2. 00680	23. 00940	158. •00945
					2. 01351	30. 31616	1.0 32211	1.0 32218	30. 72053	.02 74069		
01/15/92	1500	1.0	TEXAS	SMN			IGH DUE TO MO			1-403		
					14.2 00010	15. 00061	500. 00094	12.5 00300	7.5 00400	280. 004 10	< 1. 00530	< 1. 00535
					. 02	.01	1.67	.04	.02	З.	21.	44.
					00610	00615	00620	00665	00671	00680	00940	00945

Dw0322 1907 - 0330		TEWIDE MONITORI PERIOD OF SAN		8 TO 06/01/93			PAGE 00004
STATION ND. 1907.0330	SEGMENT - UPPER LEON CREEK COUNTY - BEXAR STATION LOCATION LEON CREEK IN RAYMOND RUSSELL WATER BRIDGE	USGS GA Park at low	GE NO		RIVER MILE	LATITUDE 29 37 55	/ LONGITUDE 098 36 32
PARAMETER 00010 00094 00530 00610 00620 00671 00940 01351 32211 72053	DESCRIPTION: TEMPERATURE, WATER (DEGREES CEN SPECIFIC CONDUCTANCE,FIELD (UMM PH (STANDARD UNITS) RESIDUE, TOTAL NONFILTRABLE (MG/ NITROGEN, AMMONIA, TOTAL (MG/L NITRATE NITROGEN, TOTAL (MG/L PHOSPHORUS, DISSOLVED ORTHOPHOS CHLORIDE (MG/L AS CL) FLOW: 1=DRY,2=LOW,3=NDRMAL,4=FLO CHLOROPHYLL-A UG/L SPECTROPHOTI DAYS SINCE PRECIPITATION EVENT	HOS/CM Ø 25C) Al) AS N) AS N) Sphorus(Mg/L AS Dod.5=Abové Norm DMETRIC ACID. Me	P) Al Th	00061 FLO 00300 DXY 00410 ALK 00535 RES 00615 NIT 00665 PHD 00680 CAR 00945 SUL 31616 FEC 32218 PHE	(GEN, DISSOLVED (ALINITY, TOTAL Sidue, Volatile (Irite Nitrogen, Sphorus, Total, Ron, Total Orga Fate (Mg/L As S) Cal Coliform, Mem	(MG/L AS CACO3) NDNFILTRABLE (MG Total (Mg/L AS N Wet Method (Mg/ Nic (Mg/L AS C) D4) Br Filter,M-FC B Spectrophotometr	/L)) L AS P) ROTH. #/100ML
EFFECTIVE DATE	DEPTH SOURCE SEGMI (FT) AGENCY	ENT STANDARDS:	VALUE/ /CODE		· · · · · · · · · · · · · · · · · · ·		•••••
10/01/67	1.0 TDWR	35. 9 00010H 000	5. 655.74 11H 00095H	5.0 00299L	5.0 00300L	9.0 6 00400H 004	.5 40. DOL 00940H
		75. 20 00945H 316					

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

•

•

•

.

•				,
DW0322 1907 - 0400	• •	• TEXAS WATER COM STATEWIDE MONITORING NETWORK SAMP Period of Report: 01/01/88 T San Antonio River Basi District ob	0 06/01/93	PAGE 00005
STATION ND. 1907.0400	SEGMENT - UPPER LEON CREEK County - Bexar Station Location Leon Creek at the Dominion, CAMP BULLIS RD EXIT OF IH 10	USGS GAGE ND 1 MI NORTH OF	RIVER MILE	LATITUDE / LONGITUDE 29 38 35 098 37 01

SAMPLE		DEPTH SOURCE	SYSTEM	PARAMETER MEASUREMENTS:	VALUE/	
DATE	TIME	(FT) AGENCY			/CODE	

•

•

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

DW0322 1908.0100					STA	TEWÍDĒ	MONI	TORING OF REP San Anti	ORT:	DRK Š 01/01/8 RIVER B	AMPLIN 8 TO (INVENTORY			PAGE 0000
STATION NO. 1908.0100	COUNT ST	ATION	KENDAL LOCATIO			ST OF E		5 GAGE I	NO	OB 1	83900		RIVER MILE		LATITUDE / 29 46 26	LONGITUDE 098 41 50
SAMPLE DATE	TIME		SOURCE AGENCY	SYSTEM CODE	PARAM	ETER ME	ASUR	EMENTS:	v	ALUE/ /CODE						
01/12/88	0950	1.0	TEXAS	SMN	w	ATER CL	ARIT	Y EXCEL	LENT	. FILIME	NTEOUS	5 GROWT	H NOTICABLY	DECREASED F	ROM PREVIOUS	QUARTER.
			•		I	9. 00010		1.00 00061	>	36. 00077	-	556. 00094	556. 00095	8.6 00300	8.07 00400	
					<	5. 00530	<	5. 00535		.02 00610		. 19 00620	. 3 t 00665	. 28 0067 1	2. 00680	
						35. 00945		2. 01351		33. 31616	<	2. 32211	< 2. 32218			
05/17/88	0910	1.0	TEXAS	SMN	A	BUNDANI	YEL	LOW AND	GREE	EN FILIM	ENTEOL	JS GROW	ITH OBSERVE	D SMALL MIN	NOWS.	
						22.9 00010		560. 00094		6.4 00300		7.65 00400	212. 00410	11. 00530	2. 00535	
						. 13 00620		1.38 00665		1.28 00671		4. 00680	33. 00940	50. 00945	2. 01351	
						3. 32218										
08/02/88	1030	1.0	TEXAS	SMN				GONE F			SOME	ALGAL	GROWTH ON BO	TTOM. SEVER	AL VARIETIES	OF FISH. C
						26.3 00010		. 232 0006 1	>	20. 00077		726. 00094	6.5 00300	8.1 00400	221. 00410	
						2. 00535		. 15 006 10		4.92 00620		1.98 00665	1.88 00671	4. 00680	43. •00940	
						2. 01351		194. 31616		12. 32211	<	2. 32218				
10/18/88	0900	1.0	TEXAS	SMN	С	LARITY	OF W	ATER EX	CELLI	ENT. SMA	LL AMO	DUNT OF	DUCKWEED AL	ONG BANK. F	ISH NOTICED.	
						20. 00010		1.71 00061	<	12. 00077		9.0 00300	8.44 00400	246. 00410	8. 00530	
						. 02 006 10	<	.01 00620		1.15 00665		1.09 00671	3. 00680	44. •00940	60. 00945	
						48. 31616	<	2. 32211	<	2. 32218						
02/23/89	0930	1.0	TEXAS	SMN	s	OME TUR	BIDI.	TY. LEV	EL DF	ROPPING.	BROW	ISH COL	.OR .			

·

SYMBOL (+) DENDTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

.

DW0322 1908.0100	• • TEXAS WATER COMMISSION • • • STATEWIDE MONITORING NETWORK SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/88 TO 06/01/93 SAN ANTONID RIVER BASIN DISTRICT 08											AGE 00007
STATION ND. 1908.0100		Y - ATION	KENDAL LOCATIO	N	CREEK Southeast of	USGS GAGE	NO 0818	08 18 3900		LATITUDE / LONGITUDE 29 46 26 098 41 50		
SAMPLE DATE	TIME		SOURCE			AEASUREMENTS:	VALUE/ /CODE					
02/23/89	0930	1.0) TEXAS	SMN	11.2 00010	.01 00061	625. 00094	11. 00300	8.03 00400	184. 00410	8. 00530	4. 00535
					1.40 00610	. 33 006 15	. 20 00620	1.48 00565	1.42 00671	7. 00680	27. 00940	53. 00945
					2. 01351	3. 32211	0. 32218					
08/29/89	0945	1.0) TEXAS	SMN	WATER 1	URBID-MURKY.	LOT OF ALGAL	GROWTH, SUI	RF . ACE COVER	ED WITH DUCK	WEED	
					26. 00010	. 34 0006 1	750. 00094	13. 00300	9.43 +00400	326. 00410	37. 00530	20. 00535
					.04 00610	. O 1 006 15	.01 00620	.733 00665	. 330 0067 1	12. 00680	69. +00940	78. •00945
					2. 01351							
11/30/89	1100	1.0	TEXAS	SMN	NUMEROL	_	ATER UPSTREAM	OF SAMPLE	. POINT			
					9.1 00010	.5 00061	500. 00094	12.4 00300	8.7 00400	185. 00410	3. 00530	1. 00535
					. 14 006 10	. 08 006 15	6.0 00620	3.20 00665	2.92 00671	5. 00680	59. •00940	62. 00945
					2. 01351	990. +31616	21.6 32211	14.1 32218				
05/09/90	1 100	1.0	TEXAS	SMN	22. 00010	28. 00061	500. 00094	9.2 00300	8.2 00400	200. 00410	3. 00530	2. 00535
			•		.02 00610	< .01 00615	.66 00620	. 1 10 00665	. 109 0067 1	3. 00680	16. 00940	40. 00945
					3. 01351	44. 31616	1.6 32211	< 1. 322.18				
08/29/90	1730	1.0	TEXAS	SMN	WATER C	LEAR - SUBST	RATE COVERED	WITH THICK (GROWTH OF PERI	PHYTON - NUM	EROUS SUNFIS	H OBSERVE

•

	,				<u>ور</u>)						لا <u>ت</u> ت میں	<u> </u>			r
DW0322 1908.0100							MONITOR ERIOD OF	ING NE	ETWO RT: NIO	RK S 01/01/8 RIVER 8	AMPLIN 8 TO 0	NG DATA	O N * * Inventory	•			PA	GE 00008	
STATION NO 1908.0100	. S1	Y -	KENDA LOCATI	ON		K East of I	USGS G BOERNE	AGE NO)	08 1	83900		RIVER MIL	ε		ATITUD 9 46 2	E / LONG 6 098	1 TUDE 41 50	
SAMPLE DATE	TIME			E SYSTE		AMETER M	EASUREME	NTS:	VA	LUE/ /CODE									
08/29/90	1730	1.0	D TEXAS	SMN		28.1 00010		. 87 06 1		.46 00078		375. 00094	10.1 00300		8.0 00400		156. 0410	1. 00530	
					<	1. 00535		.09 610	<	.01 00615		.43 00620	.404 00665		1. 00680	o	27. 0940	38. 00945	ı
						3. 01351		60. 616	<	1. 32211	<	1. 32218							
01/23/91	1120	1.0	D TEXAS	i SMN		9.1 00010		30. 094		11.8 00300		7.0 00400	204. 00410		1. 00530	< o	1. 0535	.02 005 10	
					<	.01 00615		. 37 620		. 147 00665		. 137 00671	5. 00680		17. 00940	o	24. 0945	3. 01351	
			•			8. 31616		1.0 211		0. 32218		4. 74069							
04/30/91	1030	1.0) TEXAS	SMN			URBID AN D TOPMIN				QUANT	ITIES OF	ATTACHED	ALGAL	GROWTH C	IN ROCK	S - NUME	ROUS SUN	1
						19.6 00010		75. 094		7.0 00300		8.0 00400	212. 00410		2. 00530	o	2. 0535	.04 006 10	
						.01 00615		.95 620		. 33 1 00665		. 324 00671	. 9 00680		21. 00940	C	18. 0945	3. 01351	
		÷			<	1. 31616	< 32	1. 211		3.7 32218		10. 74069							
11/12/91	1300	1.0) TEXAS	SMN		WATER CI	LEAR-HEA	VY GRO	DWTH	OF CHA	RA ON	SUBSTRA	TE-WATERFO	WL SUN	FISH BAS	S NUME	ROUS		
						14.1 00010		3.2 061		470. 00094		13.0 00300	8.2 00400		214. 00410	Q	2. (0530	(1. 00535	
						.05 00610		.01 615		.03 00620		5.71 00665	. 69 0067 1		5. 00680	Q	30. 0940	43. 00945	
						2. 01351		26. 616		1.1 32211		1.6 32218							

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

٠

DW0322 1908 - 0 100	· .		NITORING NETWO OD OF REPORT:	DRK SAMPLI 01/01/88 TO RIVER BASIN	I S S I O N • • • Ng data inventory 06/01/93		PAGE 00009
STATION ND. 1908.0100	SEGMENT - UPPER CIBOL COUNTY - KENDALL STATION LOCATION CIBOLO CREEK 2.5 MILES	U	SGS GAGE ND RNE	08 183900	RIVER MILE	LATITU 29 46 2	
PARAMETER 00010 00077 00094 00300 00410 00535 00615 00665 00665 00945 31616 32218	DESCRIPTION: TEMPERATURE, WATER (DEG TRANSPARENCY, SECCHI DI SPECIFIC CONDUCTANCE,FI OXYGEN, DISSOLVED (MG/L ALKALINITY, TOTAL (MG/L RESIDUE, VOLATILE NONFI NITRITE NITROGEN, TOTAL PHOSPHORUS, TOTAL, WET CARBON, TOTAL ORGANIC (SULFATE (MG/L AS SO4) FECAL COLIFORM,MEMBR FI PHEOPHYTIN-A UG/L SPECT	SC (INCHES) ELD (UMHOS/CM ♥ 2) AS CACO3) LTRABLE (MG/L) (MG/L AS N) METHOD (MG/L AS P MG/L AS C) LTER,M-FC BROTH.) #/100ML	PARAME 00061 00078 00095 00400 00530 00610 00620 00671 00940 01351 32211 74069	FLOW STREAM, 1 TRANSPARENCY, 2 SPECIFIC CONDUC PH (STANDARD UP RESIDUE, TOTAL NITROGEN, AMMON NITRATE NITROG PHOSPHDRUS, DIS CHLORIDE (MG/L FLOW: 1=DRY, 2=LC	NONFILTRABLE (MG, NIA, TOTAL (MG/L A EN, TOTAL (MG/L A SSOLVED ORTHOPHOSI AS CL) DW,3=NORMAL,4=FLOI JG/L SPECTROPHOTOJ	RS) 25C) /L) AS N) 5 N) PHDRUS(MG/L AS P) DD,5=ABOVE NDRMAL
EFFECTIVE Date	DEPTH SOURCE (FT) AGENCY	SEGMENT STANDA	RDS: VALUE/ /COI	DE			
10/01/67	1.0 TDWR	32. 00010H 75. 00945H	90. 00011H 200. 31616H	655.74 00095H 400. 70300H	5.0 5.0 00299L 00300L	9.0 00400н (6.5 40. X0400L 00940H

,

•

•

.

•

.

Dw0322 1908.0200		* * * Sta	TEWIDE MONITORIN Period of R San A	IG NETWORK	38 TO 06/01/93	INVENTORY	PAGE 00010
STATION ND. 1908.0200	SEGMENT - UPPER COUNTY - KENDA STATION LOCATI CIBOLO CREEK AT	ION	USGS GAG BOERNE	SE ND 08	183900	RIVER MILE	ONGITUDE 098 43 00
SAMPLE DATE	DEPTH SOURC		ETER MEASUREMENT	S: VALUE/ /CODE			

.

1

SYMBOL (+) DENDTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

•

	- (
DW0322 1908.0250		* * ST	ATEWIDE MONITOR PERIOD OF	RING NETWORK	01/88 TO 06/01	TA INVENTORY	PAGE 00011
STATION NO. 1908.0250	COUNTY - KENDA STATION LOCATI		USGS G	GAGE NO	08 183900	RIVER MILE	LATITUDE / LONGITUDE 29 47 00 098 43 00
SAMPLE Date	DEPTH SOURC		METER MEASUREME		/ DDE	•••••	

-

DW0322 1908.0300				DE MONITORING PERIOD OF RE SAN AN	NETWORK		INVENTORY		PAGE 00012	
STATION ND. 1908.0300		UPPER CIBOLO Kendall Location Ek at sparkli	a.	USGS GAGE IN BOERNE	ND OB	183900	RIVER MILE	LATIT 29 47		
SAMPLE Date	DEPTH TIME (FT)	I SÖURCE SYSTE Agency Code		MEASUREMENTS	: VALUE/ - /CODE				•••••	

1

٠

.

.

•

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

· 33 33					
⁻ DW0322 1908.0400		STATEWIDE MONITORING N PERIOD OF REPO	T E R C O M M I S S I ETWORK SAMPLING DATA RT: 01/01/88 TO 06/01/93 NIO RIVER BASIN RICT 08		PAGE 00013
STATION ND. 1908.0400	SEGMENT - UPPER CIBOLC COUNTY - KENDALL STATION LOCATION CIBOLO CREEK AT IH 10 - BOERNE	USGS GAGE N	0 08 18 3900	RIVER MILE	LATITUDE / LONGITUDE 29 49 00 098 45 15
SAMPLE DATE	DEPTH SOURCE SYSTE TIME (FT) AGENCY CODE	M PARAMETER MEASUREMENTS:	VALUE/ /CODE		

•

•

•

		. 7	and the second se	3.)				ويستنف	<u> </u>	<u> </u>				
DWO3 190	22 8.0500						MONITO PERIOD O	RING NET	WORK 1: 01/01 10 RIVER	/88 TO O	G DATA	INVENTORY	-			PAG	E 00014	
	10N ND. 8.0500		1 -	KENDAL	DN	 K Lake dis		GAGE ND	o	8 183900		RIVER MI	LE		LATITUDE 29 49 06	/ LONG1 098 4		
	MPLE Ate	TIME				 AMETER N			VALUE/ /COD	£								

.

٠

1

SYMBOL (.) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

DW0322 1910.0020		• • • T E X A S W A T E R C (STATEWIDE MONITORING NETWORK 5 PERIOD OF REPORT: 01/01/ SAN ANTONIO RIVER (DISTRICT OB	B8 TO 06/01/93	PAGE 00001
STATION ND. 1910.0020	SEGMENT - SALADO CREEK COUNTY - BEXAR STATION LOCATION SALADO CREEK 100 METERS UPSTREAM OF THE SAN ANTONIO	USGS GAGE NO O RIVER CONFLUENCE	RIVER MILE	LATITUDE / LONGITUDE 29 16 55 098 26 02
SAMPLE DATE	DEPTH SOURCE SYSTEM I TIME (FT) AGENCY CODE	PARAMETER MEASUREMENTS: VALUE/ /CODE	••••••••••••••••••	

SYMBOL (*) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

•

.

		,) T										
DW0322 1910.0050					STATEWID	PERIOD O	RING NE F Repor	TWORK S	AMPLING DAT 8 TO 06/01/	I O N 🔹 🔹 • A INVENTORY 93		1	PAGE 00002
	CEONE			ODEEX			DISTR	NCT 08					
STATION ND. 1910.0050	SALAD	Y - Ation L	BEXAR OCATIO AT SO	CREEK N UTHTON	ROAD	USGS (GAGE NO)		RIVER MILE		LATITUDE / LOI 29 17 52 09	NGITUDE 8 25 15
SAMPLE DATE	TIME	DEPTH (FT)			PARAMETER		ENTS:	VALUE/ /CODE					
02/22/88	1035	1.0	S ANT	SMN	WATER	SLIGHTLY	TURBIC	SOME FOAM	ING SKY CLE	AR			
					15.6 00010		680. 0095	9.1 00389	8.0 00403		.01 00660	55. •00940	73. 00945
					3. 01351	3	70. 1616						
03/30/88	1050	1.0	S ANT	SMN	WATER S	SLIGHTLY	TURBIC	SKY PARTL	Y CLOUDY				
					17.8 00010		890. 0095	8.7 00389	8.1 00403	.5 00620	. 16 00660	80. •00940	91. 00945
					3. ⁻ 01351		100. 1616						
04/27/88	0820	1.0	S ANT	SMN	_			ITLY TURBID					
					21.1 00010		830. 0095	7.8 00389	7.7 00403		.09 00660	73. +00940	102. 00945
					3. 01351	3	80. 1616						
06/27/88	1010	1.0	S ANT	SMN	SKY PA	RTLY CLOU	JDY WAT		NT				
					26.7 00010		620. 0095	7.30 00389	7.9 00403		. 16 00660	44. 00940	64. 00945
					5. 01351		100. 1616						
08/29/88	0830	1.0	S ANT	SMN	LITTLE	FLOW, PA	ARTLY C						
					27.8 00010		750. 0095	8.2 00389	8.0 00403		. 10 00660	66. +00940	63. 00945
					60. 31616								
10/24/88	0840	1.0	S ANT	SMN	CLOUDY								
					20.6 00010	7 00	740. 0095	8.4 00389	8.0 00403	. 17 00620	66. +00940	65. 00945	2. 01351
					70. 31616								

SYMBOL (•) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

.

٠

	<i>(</i> ,				الاست. الاست.						
Dw0322 1910.0050				STATEWIDE	MONITORING NI RIOD OF REPOI	ETWORK SA RT: 01/01/88 NIO RIVER BA				P	AGE 00003
STATION ND. 1910.0050	ST SALAD	NT - SALADO Y - BEXAR Ation Locatio O Creek at So N Antonio		ROAD	USGS GAGE N	0		RIVER MILE		TITUDE / LON 17 52 098	
SAMPLE DATE	TIME			A PARAMETER ME		VALUE/ /CODE					
11/28/88	0830	1.0 S ANT	SMN	PARTLY C	LOUDY 760.	8.9	7.7	.09	.02	41.	60.
				00010 3.	00095	00389	00403	00620	00660	00940	00945
				01351	31616						
04/24/89	1045	1.0 S ANT	SMN	PARTLY, C 22.2	LOUDY 540.	8.3	8.0	. 36	. 22	18.	50.
				00010	00095	00389	00403	00620	00660	00940	00945
				3. 01351	660. 31616						
05/22/89	0905	1.0 S ANT	SMN	25.0 00010	740. 00095	8.6 00389	8.6 00403	. 22 00620	.03 00660	68. +00940	51. 00945
				2. 01351	60. 31616	312. 70300					
06/26/89	1000	1.0 S ANT	SMN	25.0 00010	730. 00095	8.4 00389	8.4 00403	. 25 00620	.07 00660	67. •00940	78. 00945
				2. 01351	10. 31616	307. 70300					
07/24/89	0925	1.0 S ANT	SMN	27.2 00010	880. 00095	8.2 00389	8.5 00403	.02 00620	.03 00660	110. +00940	88. 00945
				2. 01351	50. 31616	371. 70300					
08/28/89	0900	1.0 5 ANT	SMN	27.2 00010	850. 00095	9.5 00389	8.3 00403	.02 00620	.07 00660	97. +00940	58. 00945
				2. 01351	520. 31616	358. 70300					

SYMBOL (+) DENDTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

DW0322 1910.0050			NITORING NET OD OF REPORT	WORK SAMPL : 01/01/88 TO O RIVER BASIN	06/01/93			P	AGE 00004
STATION ND. 1910.0050	SEGMENT - SALADD CREEK COUNTY - BEXAR STATION LOCATION SALADO CREEK AT SOUTHTON IN SAN ANTONIO	U	SGS GAGE NO		F	RIVER MILE			GITUDE 25 15
PARAMETER 00010 00389 00620 00940 01351 70300	DESCRIPTION: TEMPERATURE, WATER (DEGRE OXYGEN,DISS., LAB ANAL B) NITRATE NITROGEN, TOTAL (CHLORIDE (MG/L AS CL) FLOW: 1=DRY,2=LOW,3=NORMAL RESIDUE,TOTAL FILTRABLE (Y PROBE OF FIELD (MG/L AS N) L,4=Flood,5=Abov	E NORMAL	PARAM 0009 0040 0066 0094 3161	5 SPEC 3 PH (0 PHOS 5 SULF	CRIPTION: CIFIC CONDUCT (STANDARD UNI SPHATE, ORTHO FATE (MG/L AS AL COLIFORM,M	TS) LÁB (MG/L AS PO4 S04)	4)	#/100ML
EFFECTIVE Date	DEPTH SOURCE (FT) AGENCY	SEGMENT STANDA		:ODE					
10/01/67	1.0 TDWR	32. 000 10H	90. 00011H	901.64 00095H	5.0 00299L	5.0 00300L	9.0 00400H	6.5 00400L	50. 00940H
		200. 00945H	2000. 31616H	550. 70300H					

٠

•

.

•

.

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

								. الأحمد				
· DW0322 1910.0055				STATEWIDE	X A S W A Monitoring Ni Riod of Repoi San Antoi Disti	ETWORK S RT: 01/01/8 NIO RIVER B	AMPLING DATA 8 TO 06/01/9:		•		ſ	PAGE 00005
STATION NO. 1910.0055	SALADO C	- SALADO - BEXAR On Locatio Reek at Go PUS CHRIST	DLIAD ROA		USGS GAGE NO	D		RIVER MIL	E			NGITUDE 8 24 25
SAMPLE DATE		PTH SOURCE FT) AGENCY		PARAMETER ME	ASUREMENTS:	VALUE/ /CODE						
09/13/90	1 107	1.0 SARA	SMN	FLOW SEV	ERITY 5							
				25. 00010	470. 00095	7.5 00300	7.2 00400	< .01 00610		.0100 00615	2.580 00620	· . 1 10 00665
				.075 00671	10.6 00680	32.8 00940	37.4 00945	60. 31616				

.

•

•

1

DW0322 1910.0055			NITORING NET	WORK SAMP 1: 01/01/88 T 10 RIVER BASI				P	AGE 00006
STATION NO. 1910.0055	SEGMENT - SALADO CREEK COUNTY - BEXAR STATION LOCATION SALADO CREEK AT GOLIAD RO (OLD CORPUS CHRISTI HIGHW	AD	ISGS GAGE NO		R	IVER MILE			GITUDE 24 25
PARAMETER 00010 00300 00610 00620 00671 00940 31616	DESCRIPTION: TEMPERATURE, WATER (DEGRE OXYGEN, DISSOLVED (MG/L) NITROGEN, AMMONIA, TOTAL NITRATE NITROGEN, TOTAL (PHOSPHORUS, DISSOLVED ORT CHLORIDE (MG/L AS CL) FECAL COLIFORM, MEMBR FILT	(MG/L AS N) Mg/L AS N) Hdphdsphorus(Mg		PARA 000 004 006 006 009	95 SPEC 00 PH (9 15 NITR 65 PHOS 80 CARB	STANDARD UNI ITE NITROGEN PHORUS, TOTA	. TOTAL (MG/ L, WET METHO Ganic (Mg/L	LASN) D (MG/LASI	P)
EFFECTIVE DATE	DEPTH SOURCE (FT) AGENCY	SEGMENT STANDA		, CODE					
10/01/67	1.0 TDWR	32. 00010H	90. 00011H	901.64 00095H	5.0 00299L	5.0 00300L	9.0 00400H	6.5 00400L	50. 00940H
		200. 00945H	2000. 31616H	550. 70300H					

•

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

DW0322 1910.0060	• •	* TEXAS WATER CO Atewide Monitoring Network Sa Period of Report: 01/01/88 San Antonio River Ba District ob	B TO 06/01/93	PAGE 00007
STATION ND.	SEGMENT - SALADO CREEK County - Bexar Station Location Salado Creek at Loop 410 South In San Antonio	USGS GAGE NO	RIVER MILE	INACTIVE LATITUDE / LONGITUDE 29 19 50 098 24 42
SAMPLE DATE	DEPTH SOURCE SYSTEM PARA TIME (FT) AGENCY CODE	METER MEASUREMENTS: VALUE/ /CODE		

•

•

٠

.

.

			<u>,</u>] .			(****** *]) ~1			3			1.	
DW0322 1910.0100					• • S	TATEWIDE		ITORING D OF REP SAN ANTI	NETW DRT:	DRK S/ 01/01/88 RIVER B/	AMPLI 3 to		INV					PAGE	00008
STATION NO. 1910.0100	SALADO		AR TION LOO		[N		US	GS GAGE I	NO	08 1 1	78800	0	RI	VER MILE		LATITU 29 21 :		NGITU 824	
SAMPLE DATE	TIME	DEPTH SOU (FT) AGE	RCE NCY	SYSTER CODE	A PAR	AMETER M	EASU	REMENTS:	v	ALUE/ /CODE									
08/10/88	1650	1.0 TEX	AS	SMN		USGS 6. N	90 W	ATER MURI	KY L	IGHT BRO	WN GF	REEN IN	COLO	RDISSOLVED	OXYGEN AT	F 80.6 I	PERCENT	SATI	JRATIO
						28.6 00010		15.0 00061		710. 00094		6.10 00300		215. 00410	71500. 00496	(16. 00530		2. 00535
						1300. 00557	<	.02 00610		.7 00620		1020. 00626		.07 00665	525. 00668	(.03 00671		. <u>5.</u> 00680
						56. •00940		49. 00945		6.7 01003		79. 01008	<	.4 01028	13. 01029	(12. D1043		21. 01052
						170. 01053		10. 01068	<	. 2 0 1078		51. 01093		.60 01148	3. 01351	:	440. 31616	<	2. 32211
					<	2. 32218	<	5.0 39061	<	3.0 39064	<	3.0 39067	<	3.0 39073	< 1.0 39076	< ;	3.0 39301	<	3.0 39306
					<	3.0 39311	<	3.0 39316	<	1.5 39321	<	1.5 39328	<	1.0 39333	< 6.0 39351	< :	6.0 39363	<	3.0 39368
					<	6.0 39373	<	2.0 39383	<	3.0 39393	<	50. 39403	<	. 5 394 13	< 1.0 39423	< :	10. 39481	<	20. 395 19
					<	5.0 39531	<	3.0 39541	<	5.0 39571	<	3.0 39601	<	1.0 39701	< 50. 39731	< ;	10. 39741	<	10. 3976 1
					<	1.0 39783		.034 7 192 1											
08/09/89	1300	1.0 TEX	AS	SMN		PARTLY	CLOU	DY SUNNY	WAT	ER OLIVE	BRO	WN IN CO)LO	. R					
						25.4 00010		67.4 00061		643. 00094		6.2 00300		7.7 00400	206. 00410	C	24. 00530		4. 00535
						. 05 006 10		.01 00615	<	.01 00620		. 138 00665	•	. 130 00671	6. 00680	+(118. 00940		56. 00945
						3. 01351													
08/15/90	1420	1.0 TEX	AS	SMN		WATER C	OLOR	LIGHT G	REEN	USGS 7.	95								
						27.8 00010		63.90 00061	>	1.00 00078		672. 00094		8.3 00300	7.4 00400	c	230. 004 10		14. 00530

3

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

		<u> </u>						<u>ک</u> او ا			
DW0322 1910.0100		•		STATEWIDE	MONITORING P ERIOD OF REPO SAN ANTO	NETWORK S) M M I S S I Sampling Data 18 to 06/01/9 Basin	INVENTORY		F	PAGE OOOO9
STATION ND. 1910.0100		- BEXA On Locat Reek at	ION LOOP 13 1	IN	USGS GAGE I	ND 081		RIVER MILE		LATITUDE / LON 29 21 25 098	IGITUDE 24 45
SAMPLE Date			CE SYSTEM	A PARAMETER M	EASUREMENTS :	VALUE/ /CODE					
08/15/90	1420	1.0 TEXA	S SMN	7. 00535	. 32 006 10	< .01 00615	.86 00620	.04 00665	.03 00671	1. 00680	42. 00940
				38. 00945	3. 01351	47. 31616	< 1. 32211	< 1. 32218			
09/13/90	1120	1.0 SARA	SMN	FLOW SET	VERITY 5						
				25. 00010	4 10 . 00095	7.0 00300	6.9 00400	.02 006 10	< .0100 00615	.850 00620	.260 00665
				.095 00671	13.8 00680	23.7 00940	29.4 00945	1850. 31616			
07/22/91	1542	1.0 TEXA	S SMN	DAY OVE	RCAST SLIGHT	DRIZZLE PHY	TOPANKTON GR	EEN IN COLOR			
				27.5 00010	12. 00061	. 50 00078	285. 00090	659. 00094	10.5 00300	84. 00301	7.9 00400
				246. 00410	v .3 00480	14. 00530	2. 00535	.03 00610	< .01 00615	.54 00620	.06 00665
				.04 0067 1	4. 00680	50. •00940	14. 00945	3. 01351	180. 31616	< 1. 32211 .	4.0 32218

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

DW0322		* • • T E X STATEWIDE MO					•		PAGE 00010
1910.0100	•	PERI	OD OF REPORT: SAN ANTONIO DISTRIC	RIVER BASIN	06/01	/93			
STATION ND. 1910.0100	SEGMENT SALADO CREEK County - bexar Station location Salado creek at loop 13 South San Antonio	U	SGS GAGE NO	08178800		RIVER MIL	1	ATITUDE / LO 29 21 25 09	
00094	TEMPERATURE, WATER (DEGR TRANSPARENCY, SECCHI DIS SPECIFIC CONDUCTANCE,FIE OXYGEN, DISSOLVED (MG/L) PH (STANDARD UNITS) SALINITY - PARTS PER THO RESIDUE, TOTAL NONFILTRA OIL & GREASE (FREON EXTR NITRITE NITROGEN, TOTAL NITROGEN,ORG. KJEL.,BOT. PHOSPHORUS,TOTAL, BOTTOM CARBON, TOTAL ORGANIC (M SULFATE (MG/L AS SO4) BARIUM IN BOTTOM DEPOSIT CHROMIUM,TOTAL IN BOTTOM LEAD IN BOTTOM DEPOSITS FLOW: 1=DRY,2=LOW,3=NORMA CHLOROPHYLL-A UG/L SPECT PENTACHLOROPHENOL IN BOT CHLOROPHYLL-A UG/L SPECT PENTACHLOROPHENOL IN BOT CHLOROPHYLL-A UG/L SPECT DE IN BOTTOM DEPOSI O,P' DDT IN BOTTOM DEPOS O,P DDD IN BOTTOM DEPOS O,P' DDT IN BOTTOM DEPOS CHLORDANE IN BOTTOM DEPOS CHLORDANE IN BOTTOM DEPOS TOXAPHENE IN BOTTOM DEPOS	EES CENTIGRADE) C (METERS) LD (UMHDS/CM ¢ 2	5C)	0006 1 00090 00095 0030 1	 	FLOW STREAM OXIDATION RE SPECIFIC CON OXYGEN, DISS	A, INSTANTANEOL DUCTION POTENT DUCTANCE (UMHO SOLVED (PERCENT TOTAL (MG/L AS ITION. BOTTOM C ATILE NONFILTO MONIA, TOTAL (COGEN, TOTAL (TOTAL, WET MET DISSOLVED ORT SOLVED OR	JS (CUBIC FEE FIAL (MILLIVO DS/CM @ 25C) F OF SATURATI	T PER SEC) LTS) On)
EFFECTIVE Date	DEPTH SOURCE (FT) Agency	SEGMENT STANDA	RDS: VALUE/						
10/01/67	1.0 TDWR	32. 00010H	90. 00011H	901.64 00095H	5. 0029	0 5.0 9⊾ 00300) 9.0 DL 00400H	6.5 00400L	50. 00940H
		200. 00945H	2000. 31616H	550. 70300H					

SYMBOL (*) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

DW0322 1910.0110					• • 5	TATEWIDE	X A S W A T Monitoring Ne Riod of Repor San Anton Distr	TWORK S. T: 01/01/8 10 RIVER B.	8 TO 06/01/9	INV				F	AGE 00011
STATION ND. 1910.0110	SALAD	Y - Ation O cree		N DUTHSIDE		ONS PARK Lake dis	USGS GAGE NO CHARGE	081	78800	RI	VER MILE				IGITUDE 25 37
SAMPLÉ DATE	TIME		SOURCE AGENCY		PAR	AMETER ME	ASUREMENTS:	VALUE/ /CODE							
09/13/90	1215	1.0	SARA	SMN		FLOW SEV	ERITY 3								
						28. 00010	321. 00095	10.0 00300	8.0 00400	<	.01 00610	<	.0100 00615	.080 00620	. 130 00665
					<	.010 00671	22.4 00680	17.5 00940	22.7 00945		6. 31616				

•

.

			. , , , , , , , , , , , , , , , , , , ,						
DW0322 1910.0110			NITORING NET	WORK SAMPL : 01/01/88 TO O RIVER BASIN	06/01/93			ſ	PAGE 00012
STATION ND. 1910.0110	SEGMENT - SALADD CREE COUNTY - BEXAR Station Location Salado Creek at Souths Immediately upstream fo	U SIDE LIONS PARK	SGS GAGE NO Arge	OB 17880	O F	RIVER MILE			NGITUDE B 25 37
PARAMETER 00010 00300 00610 00620 00671 00940 31616	DESCRIPTION: TEMPERATURE, WATER (DEC OXYGEN, DISSOLVED (MG/I NITROGEN, AMMONIA, TOTA NITRATE NITROGEN, TOTA PHOSPHORUS, DISSOLVED (CHLORIDE (MG/L AS CL) FECAL COLIFORM, MEMBR F1	L) AL (MG/L AS N) L (MG/L AS N) DRTHOPHOSPHORUS(MG		PARAM 0009 0040 0061 0066 0068 0094	5 SPEC 0 PH (5 Nitr 5 PHDS 0 Care	CRIPTION: CIFIC CONDUCT (STANDARD UNI RITE NITROGEN SPHORUS, TOTA SON, TOTAL OR FATE (MG/L AS	TS) , TOTAL (MG/ L, WET METHO GANIC (MG/L	LASN) D(MG/LAS	Ρ)
EFFECTIVE DATE	DEPTH SOURCE (FT) AGENCY	SEGMENT STANDA		ODE					
10/01/67	1.0 TDWR	32. 00010H	90. 00011H	901.64 00095H	5.0 00299L	5.0 00300L	9.0 00400H	6.5 00400L	50. 00940н
		200. 00945H	2000. 31616H	550. 70300H					

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

•

•

.

DW0322 1910.0115		T E X A S W A T E F Ide Monitoring Networ Period of Report: C San Antonio F District	01/01/88 TO 06/01/	A INVENTORY	PAGE 00013
STATION ND. 1910.0115	SEGMENT - SALADO CREEK COUNTY - BEXAR STATION LOCATION Salado Creek West Channel of Sala Southside Lions Park 304 Met RS Ab Confluence With East Channel Salad	OVE THE	08178800	RIVER MILE	LATITUDE / LONGITUDE 29 23 13 098 25 28
SAMPLE DATE	DEPTH SOURCE SYSTEM PARAMETE TIME (FT) AGENCY CODE	R MEASUREMENTS: VAL	.UE/ /CODE		

٠

•

SYMBOL (.) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

•

Dw0322 1910.0120			RK SAMPLING DATA 01/01/88 TO 06/01/93	INVENTORY	PAGE 00014
STATION ND. 1910.0120	SEGMENT - SALADO CREEK COUNTY - BEXAR STATION LOCATION SALADO CREEK EAST CHANNEL OF SALADO SOUTHSIDE LIONS PARK 15 METE RS ABOY CONFLUENCE WITH WEST CHANNEL SALAD	USGS GAGE ND) CREEK IN /E THE	08178800	RIVER MILE	LATITUDE / LONGITUDE 29 23 02 098 25 31
SAMPLE DATE	DEPTH SOURCE SYSTEM PARAMETER TIME (FT) AGENCY CODE	MEASUREMENTS: VAL	LUE/ /CODE		

.

٠

٠

•

•

1

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

DW0322 1910.0130					STATEWIDE	XASWAT Monitoring Ne Eriod of Repor San Anton Distr	TWORK S/ T: 01/01/8 ID RIVER B/	M M I S S I Ampling data B TO 06/01/9: Asin	INVENTORY		P	AGE 00015
STATION NO. 1910.0130		Y -	SALADO BEXAR Locatio (at Rig		E (US	USGS GAGE NO	08 11	78800	RIVER MILE			GITUDE 25 34
SAMPLE DATE	TIME		SOURCE AGENCY		PARAMETER M	IEASUREMENTS :	VALUE/ /CODE					
09/13/90	1230	1.0	SARA	SMN	FLOW SE	VERITY 5						
					25. 00010	240. 00095	6.4 00300	6.7 00400	.02 00610	.0700 00615	1.430 00620	.490 00665
					. 280 0067 1	10.3 00680	8.2 00940	18.8 00945	450. 31616			
12/20/90	1115	1.0	SARA	SMN	FLOW SE	VERITY 3						
			•		16. 00010	621. 00095	8.3 00300	6.9 00400				

.

) (7), (m j					, , , , , , , , , , , , , , , , , , ,
Dw0322 1910.0130	•		NITORING NET DD OF REPORT	ORK SAMPLI 01/01/88 TO 0 RIVER BASIN				Ρ	AGE 00016
STATION ND. 1910.0130	SEGMENT - SALADO CREEK County - Bexar Station Location Salado Creek at Rigsby Ave 87)		5GS GAGE ND	08 178800) I	RIVER MILE		••••••••••••••••••••••••••••••••••••••	GITUDE 25 34
PARAMETER 00010 00300 00610 00620 00671 00940 31616	DESCRIPTION: TEMPERATURE, WATER (DEGREES OXYGEN, DISSOLVED (MG/L) NITROGEN, AMMONIA, TOTAL (MG NITRATE NITROGEN. TOTAL (MG PHOSPHDRUS, DISSOLVED ORTHO CHLORIDE (MG/L AS CL) FECAL COLIFORM, MEMBR FILTER	G/L AS N) /L AS N) PHOSPHORUS(MG,	•	PARAME 00095 00400 00615 00665 00665 00680 00945	5 SPE(5 PH (5 NITE 5 PHOS 5 CARE	CRIPTION: CIFIC CONDUCT (STANDARD UNI RITE NITROGEN SPHORUS, TOTA BON, TOTAL OR FATE (MG/L AS	TS) , TOTAL (MG/ L, WET METHO GANIC (MG/L	L AS N) D (MG/L AS	P)
EFFECTIVE DATE	DEPTH SOURCE S (FT) AGENCY -	EGMENT STANDA		DDE					
10/01/67	1.0 TDWR	32. 00010H 200. 00945H	90. 00011H 2000. 31616H	901.64 00095H 550. 70300H	5.0 00299L	5.0 00300L	9.0 00400H	6.5 00400L	50. 00940H

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

`````````````		
· DW0322 1910.0135	* * * T E X A S W A T E R C O M M I S S I O N * * * Statewide Monitoring Network Sampling Data Inventory Period of Report: 01/01/88 to 06/01/93 San Antonio River Basin District ob	PAGE 00017
STATION ND. 1910.0135	SEGMENT - SALADO CREEK COUNTY - BEXAR USGS GAGE NO OB178800 RIVER MILE STATION LOCATION SALADO CREEK AT IH-10	LATITUDE / LONGITUDE 29 25 04 098 25 35
SAMPLE DATE	DEPTH SOURCE SYSTEM PARAMETER MEASUREMENTS: VALUE/	

•

•

•

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

	÷]										
Dw0322 1910.0137					STATEWID	E X A S W A T E MONITORING NE PERIOD OF REPOR SAN ANTON DISTR	TWORK S T: 01/01/8 10 RIVER B	B TO 06/01/93	INVENTORY	•		AGE 00018
STATION NO. 1910.0137		Y - ATION	SALADO Bexar Locatio K at g		RD	USGS GAGE NO	081	78800	RIVER MIL	- I		GITUDE 25 09
SAMPLE DATE	TIME		SOURCE		PARAMETER	MEASUREMENTS:	VALUE/ /CODE					
09/13/90	1245	1.0	SARA	SMN	FLOW S	SEVERITY 5						
					24. 00010		7.2 00300	6.9 00400	< .01 00610	. 0500 006 15	2.440 00620	.440 00665
					. 280 0067 1		7.6 00940	17.4 00945	3100. +31616			

.

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

٠

						<u>م</u>		
DW0322 1910.0137	•		NITORING NET	WORK SAMPLI 1: 01/01/88 TO 0 10 RIVER BASIN	NG DATA INVENT	• • • Ory		PAGE 00019
STATION ND. 1910.0137	SEGMENT - SALADO CREEK COUNTY - BEXAR Station Location Salado Creek at Gembler		SGS GAGE ND	08178800	RIVER	MILE		LONGITUDE D98 25 09
PARAMETER 00010 00300 00610 00620 00671 00940 31616	DESCRIPTION: TEMPERATURE, WATER (DEGRI OXYGEN, DISSOLVED (MG/L) NITROGEN, AMMONIA. TOTAL NITRATE NITROGEN, TOTAL PHOSPHORUS, DISSOLVED OR CHLORIDE (MG/L AS CL) FECAL COLIFORM, MEMBR FIL	(MG/L AS N) (MG/L AS N) THOPHOSPHDRUS(MG/		PARAME 00095 00400 00615 00665 00680 00945	SPECIFIC PH (STAND NITRITE) PHOSPHORU CARBON,	CONDUCTANCE (DARD UNITS) NITROGEN, TOTA	' METHOD (MG/L A	
EFFECTIVE DATE	DEPTH SOURCE (FT) Agency	SEGMENT STANDAR		,				
10/01/67	1.0 TDWR	32. 00010H 200. 00945H	90. 00011H 2000. 31616H	901.64 00095н 550. 70300н	5.0 00299L 00		.0 6.5 00H 00400L	50. . 00940н

·····				- .2		روست. ا	/	, ¹ ,				/		
DW0322 1910.0140					* * * Sta	TEWIDE	ERIOD OF	REPORI	WORK SAM 1: 01/01/88 10 River Bas	TO 06/01/93	INVENTORY			PAGE 00020
STATION NO. 1910.0140	COUNT	ATION D cree	SALADO BEXAR Location K at ih	N	SAN		USGS G	AGE NO	08 178	800	RIVER MILE		ATITUDE / LO 9 26 58 09	NGITUDE 8 25 20
SAMPLE DATE	TIME	DEPTH (FT)	SOURCE AGENCY	SYSTER CODE	PARAM	ETER M	EASUREME	NTS:	VALUE/ - /CODE -					
01/14/88	0925	1.0	S ANT	SMN	W	ATER S	LIGHTLY	TURBID	SKY OVERCAS	Т.				
						600. 00095		8.6 389	7.5 00403	. 8 00620	35. 00940	18. 00945	3. 01351	50. 31616
02/08/88	1010	1.0	S ANT	SMN	w	ATER T	URBID SK	Y OVER	CAST					
						15.6 00010		70. 095	8.6 00389	7.7 00403	.7 00620	.8 00660	32. 00940	54. 00945
						3. 01351		00. 616						
03/14/88	1000	1.0	S ANT	SMN	W	ATER S	SLIGHTLY	TURBID	ALGAE PRESE	NT SKY CLEA	R			
						20.0 00010		30. 095	8.5 00389	7.8 00403	.4 00620	.07 00660	26. 00940	38. 00945
						3. 01351		10. 616						
04/13/88	0900	1.0	S ANT	SMN	c	LEAR S	5KY							
						22.2 00010		20. 095	8.0 00389	7.5 00403	.6 00620	.07 00660	27. 00940	34. 00945
						3. 01351		70. 616						
05/09/88	1055	1.0	S ANT	SMN	L	OW FLC	WC							
						24.4 00010		20. 1095	8.2 00389	7.7 00403	.5 00620	.04 00660	22. 00940	28. 00945
						40. 31616								
06/13/88	1012	1.0	S ANT	SMN		CLOUDY	1							
						25.5 00010	00	i50. 1095	7.8 00389	7.2 00403	.6 00620	. 18 00660	28. 00940	36. 00945
						5. 01351		616						
07/11/88	1153	1.0	S ANT	SMN	C	LOUDY			D THAN 141 C	TANDAGO				

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

					STATEWIDE	MONITORING N	ETWORK S RT: 01/01/8 NIO RIVER B	8 TO 06/01/9	INVENTORY		P	AGE 00021
STATION NO. 1910.0140		TION L	BEXAR Ocatio	CREEK N 35 In	San	USGS GAGE NO	0 081	78800	RIVER MILE	!	LATITUDE / LON 29 26 58 098	IGITUDE 3 25 20
SAMPLE DATE	TIME	DEPTH (FT)	SOURCE AGENCY	SYSTEM CODE	PARAMETER N	EASUREMENTS:	VALUE/ /CODE					
07/11/88	1153	1.0	S ANT	SMN	26.7 00010	500. 00095	8.9 00389	7.8 00403	.7 00620	.05 00660	23. 00940	21. 00945
					3. 01351	1050. 31616						
08/15/88	0955	1.0	S ANT	SMN	WATER C	LEAR SKY PARTI	LY CLOUDY A	LGAE PRESENT	MINNOWS OBSER	VED		
					23.9 00010	510. 00095	8.0 00389	7.7 00403	.6 00620	.02 00660	28. 00940	24. 00945
					3. 01351	150. 31616					·	
10/10/88	0855	1.0	S ANT	SMN	22.2 00010	490. 00095	8.6 00389	8.1 00403	.77 00620	21. 00940	16. 00945	3. 01351
					100. 31616							
11/14/88	0850	1.0	S ANT	SMN	CLOUDY							
					22.8 00010	.480. 00095	8.5 00389	8.0 00403	. 79 00620	21. 00940	16. 00945	3. 01351
					40. 31616							-
02/20/89	1030	1.0	S ANT	SMN	CLOUDY							
					20.0 00010	520. 00095	8.6 00389	8.1 00403	.68 00620	24. 00940	24. 00945	3. 01351
					120. 31616							
03/20/89	0840	1.0	S ANT	SMN	PARTLY	CLOUDY						
					21.1 00010	600. 00095	8.6 00389	8.2 00403	. 80 00620	. 12 00660	36. 00940	52. 00945
					3. 01351	25000. •31616						
04/10/89	0910	1.0	S ANT	SMN	CLOUDY							

_...__

DW0322

1910.0140

• • • T E X A S W A T E R C O M M I S S I O N • • • STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/88 TO 06/01/93 SAN ANTONIO RIVER BASIN DISTRICT 08

Prices;

1

Windows

NAME OF T

.

1

1.1

1000

STATION NO. 1910.0140	SEGME COUNT ST SALAD ANTON	Y - Ation O cree	SALADO BEXAR Locatioi K at ih	N	SAN	USGS GAGE NO	08 1	78800	RIVER MILE		TITUDE / LONG 26 58 098	31 TUDE 25 20
SAMPLE DATE	TIME	DEPTH (FT)	SOURCE Agency	SYSTEM CODE	PARAMETER ME	ASUREMENTS :	VALUE/ /CODE					
04/10/89	0910	1.0	S ANT	SMN	18.3 00010	520. 00095	8.8 00389	8.2 00403	2.67 00620	.24 00660	21. 00940	20. 00945
					3. 01351	12000. •31616						
05/01/89	0855	1.0	S ANT	SMN	21.1 00010	370. 00095	8.3 00389	8.2 00403	.90 00620	.24 00660	7. 00940	28. 00945
					3. 01351	660. 31616	154. 70300					
06/12/89	0940	1.0	S ANT	SMN	25.0 00010	270. 00095	8.4 00389	7.8 00403	. 83 00620	. 60 00660	7. 00940	38. 00945
					2. 01351	16000. +31616	109. 70300					
07/17/89	1000	1.0	S ANT	SMN	27.2 00010	520. 00095	8,1 00389	8.1 00403	.51 00620	.05 00660	24. 00940	31. 00945
					2. 01351	90. 31616	219. 70300					
08/14/89	0910	1.0	S ANT	SMN	25.0 00010	530. 00095	8.1 00389	8.2 00403	.82 00620	.06 00660	23. 00940	29. 00945
					2. 01351	30. 31616	223. 70300					

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

.

Construction of the

a a construction of the second second second second second second second second second second second second se

PAGE 00022

i

()

السمينيين الأريبي					<u>المحمد المحمد u>		سا ویسا			
DW0322 1910.0140			NITORING NETW DD OF REPORT:	ORK SAMPLI 01/01/88 TO RIVER BASIN) N + + + Inventory		P	AGE 00023	
STATION ND. 1910.0140	SEGMENT - SALADO CREEK COUNTY - BEXAR STATION LOCATION SALADO CREEK AT IH 35 IN ANTONIO	_	SGS GAGE NO	08178800)	RIVER MILE		TUDE / LON 26 58 098	GITUDE 25 20	
PARAMETER 00010 00389 00620 00940 01351 70300	DESCRIPTION: TEMPERATURE, WATER (DEGRE OXYGEN,DISS., LAB ANAL B) NITRATE NITROGEN, TOTAL (CHLORIDE (MG/L AS CL) FLOW: 1=DRY,2=LOW,3=NORMAL RESIDUE,TOTAL FILTRABLE (/ PROBE OF FIELD Mg/L AS N) .,4=flood,5=Abov	E NORMAL	PARAME 000403 00403 00660 00945 31616	SPE PH PHC	SCRIPTION: CIFIC CONDUCTA (STANDARD UNIT DSPHATE, ORTHO FATE (MG/L AS CAL COLIFORM, ME	(S) LAB (MG/L AS PO4 SO4)	1)	#/ 100ML	
EFFECTIVE Date	DEPTH SOURCE (FT) Agency	SEGMENT STANDA	RDS: VALUE/ /CO	DE						
10/01/67	1.0 TDWR	32. 000 10H 200. 00945H	90. 00011H 2000. 31616H	901.64 00095H 550. 70300H	5.0 00299L	5.0 00300L	9.0 00400H	6.5 00400L	50. 00940h	

٠

•

•

٠

			3 —							
DW0322 1910.0145			•		STATEWIDE	ERIOD OF REPOR	TWORK SA T: 01/01/81 110 RIVER BA	AMPLING DATA B TO 06/01/9		PAGE 00024
STATION ND. 1910.0145	COUNT	ATION I	SALADO BEXAR Locatio K at P	N	RD, FT SAM	USGS GAGE NO HOUSTON	0 08 1	78800	RIVER MILE	LATITUDE / LONGITUDE 29 27 52 098 25 36
SAMPLE DATE	TIME		SOURCE Agency		PARAMETER M	EASUREMENTS:	VALUE/ /CODE			
11/30/90	1100	1.0	SARA	SMN	FLOW SE	VERITY 3		•		
					15. 00010	679. 00095	12.0 00300	7.2 00400		
12/11/90	1340	1.0	SARA	SMN	FLOW SE	VERITY 2				
					15. 00010	728. 00095	7.9 00300	7.3 00400		

.

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

				نومینین میرندین					
DW0322 1910.0145			NITORING NET OD OF REPORT	WORK SAMPI : 01/01/88 TO O RIVER BASI	LING DATA IN D 06/01/93			Ρ	AGE 00025
STATION ND. 1910.0145	SEGMENT - SALADO CREEK COUNTY - BEXAR STATION LOCATION SALADO CREEK AT PERSHING ARMY BASE		SGS GAGE NO STON	081788(00 R	IVER MILE			GITUDE 25 36
PARAMETER 00010 00300	DESCRIPTION: TEMPERATURE, WATER (DEGRE OXYGEN, DISSOLVED (MG/L)	ES CENTIGRADE)		PARAN 0009 0040	95 SPEC	RIPTION: Ific conduct Standard uni	ANCE (UMHOS/ TS)	CM @ 25C)	
EFFECTIVE Date	DEPTH SOURCE (FT) AGENCY	SEGMENT STANDA		, CODE					
10/01/67	1.0 TDWR	32. 00010H	90. 00011H	901.64 00095H	5.0 00299L	5.0 00300L	9.0 00400H	6.5 00400L	50. 00940H
		200. 00945H	2000. 31616H	550. 70300H					

•

DW0322 1910.0148				3 TD 06/01/93			PAGE 00026
STATION NO. 1910.0148	SEGMENT - SALADO CREEK COUNTY - BEXAR Station Location Salado Creek at East End Winans Road	USGS G	AGE ND OB 17	78800 R	RIVER MILE	LATITUDE 29 28 36	/ LONGITUDE 098 24 34
SAMPLE DATE	DEPTH SOURCE SYSTE TIME (FT) AGENCY CODE	M PARAMETER MEASUREME	NTS: VALUE/ /CODE				

ġ,

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

. DW0322 1910.0150	* * * T E X A S W A T E R C D M M I S S I D N * * * Statewide Monitoring Network Sampling Data Inventory Period of Report: 01/01/88 to 06/01/93 San Antonio River Basin District ob	PAGE 00027
STATION NO. 1910.0150	SEGMENT - SALADO CREEK COUNTY - BÊXAR USGS GAGE NO OB178800 RIVER MILE STATION LOCATION SALADO CREEK AT RITTIMAN ROAD IN SAN ANTONIO	INACTIVE Latitude / Longitude 29 29 05 098 24 57
SAMPLE DATE	DEPTH SOURCE SYSTEM PARAMETER MEASUREMENTS: VALUE/ TIME (FT) AGENCY CODE	

.

•

•

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

)])						C. C. C. C. C. C. C. C. C. C. C. C. C. C							
DW0322 1910.016	D				STATEWIC	E MONITORING PERIOD OF RE SAN AN		/88 TO OB BASIN	DATA	INVENTORY				PAG	E 00028	
STATION N 1910.016	D SALA	TY -			R ROAD	USGS GAGE	ND 0	8178800		RIVER MI	LE		LATITUDE 29 29 47	/ LONGI1 098 2		
SAMPLE DATE	TIME	DEPTH (FT)	SOURCE AGENCY	SYSTEM CODE	PARAMETER	MEASUREMENTS	: VALUE/ - /COD	E								
09/13/90	1330	1.0	SARA	SMN	FLOW S	SEVERITY 5										
					24. 00010		7. 0030		6.9 00400	< .(006	01 10	.0100 00615	1.2 006		.310 00665	
					. 200 0067				8.6 00945	2320 •316						

•

.

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

•

•

		ب الألفين الألفيس							
DW0322 1910.0160			NITORING NETWO OD OF REPORT:	DRK SAMPLIN 01/01/88 TO (RIVER BASIN		* * '* Tory		P <i>I</i>	AGE 00029
STATION NO. 1910.0160	SEGMENT - SALADD CREEK COUNTY - BEXAR Station Location Saladd Creek at Eisenhau In San Antonio	U	SGS GAGE NO	08178800	RIVE	RMILE	LATI 29 2	TUDE / LONG 9 47 098	SITUDE 25 12
PARAMETER 00010 00300 00610 00620 00671 00940 31616	DESCRIPTION: TEMPERATURE, WATER (DEGR OXYGEN, DISSOLVED (MG/L) NITROGEN, AMMONIA, TOTAL NITRATE NITROGEN, TOTAL PHOSPHORUS, DISSOLVED OR CHLORIDE (MG/L AS CL) FECAL COLIFORM, MEMBR FIL	(MG/L AS N) (MG/L AS N) THOPHOSPHORUS(MG		PARAME 00095 00400 00615 00665 00680 00945	SPECIFI PH (STA NITRITE PHOSPHO CARBON,	C CONDUCTAN NDARD UNITS NITROGEN, RUS, TOTAL	TOTAL (MG/L Wet Method NIC (Mg/L A	AS N) (MG/L AS P	·····
EFFECTIVE DATE	DEPTH SOURCE (FT) Agency	SEGMENT STANDA	RDS: VALUE/	DE			•••••		••••••
10/01/67	1.0 TDWR	32. 00010H 200. 00945H	90. 00011H 2000. 31616H	901.64 00095н 550. 70300н	5.0 00299L	5.0 00300L	9.0 00400H	6.5 00400L	50. 00940H

•

٠

2	1	3	3	3			3	3						<u>ا</u>	
DW0322 1910.0161			-			ONITORI IOD OF SAN	W A T E R Ing Networ Report: O Antonio R District	K SA	TO 06/0					PAGE	00030
STATION NO. 1910.0161		Y -	SALADO BEXAR Locatioi K at ai	N	GHWAY (S	JSGS GA)	AGE NO	OB 17	8800	RI	VER MILE		TITUDE / 30 00	LONGIT 098 25	
SAMPLE DATE	TIME		SÓURCE AGENCY		PARAMETE		NTS: VAL	UE/ /CODE				 			

•

•

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

]				-		المحتمدين المحتمدين				
DW0322 1910.0162					• • • T Statewid	E MONITORING PERIOD OF RE SAN AN	S NETWORK !	D M M I S S I Sampling data 88 to 06/01/93 Basin	INVENTORY		Ρ	AGE 00031
STATION ND. 1910.0162	SALÃD	Y - Ation O cree	BEXAR LOCATIO	RTHEAST	LOOP	USGS GAGE	END 08	178700	RIVER MILE			GITUDE 25 47
SAMPLE DATE	TIME		SOURCE		PARAMETER	MEASUREMENTS	S: VALUE/ /CODE					
02/22/88	0935	1.0	S ANT	SMN	WATER	TURBID NO AL	GAE OR MINNO	WS PRESENT SK	Y CLEAR			
					15.6 00010			7.9 00403	. 1 00620	.05 00660	56. •00940	64. 00945
					5. 01351							
03/30/88	0915	1.0	S ANT	SMN	WATER	TURBID SKY P	PARTLY CLOUDY					
					17.2 00010			7.8 00403	.6 00620	.08 00660	25. 00940	52. 00945
					3. 01351							
04/27/88	0950	1.0	S ANT	SMN	WATER	SLIGHTLY TUR	RBID ALGAE PR	ESENT MINNOWS	OBSERVED SKI	CLEAR		
					22.2 00010			7.6 00403	. 1 00620	.02 00660	32. 00940	60. 00945
					3. 01351							
05/23/88	1030	1.0	S ANT	SMN			EAR ALGAE PR	ESENT				
					21.7 00010			7.7 00403	. 1 00620	.05 00660	28. 00940	57. 00945
					2.	150.						00343
06/27/88	0910	1.0	S ANT	SMN	01351 WATER	TURBID SKY C						
			•	-	27.2	340.	6.2	7.4 00403	.4 00620	. 12	18.	64.
					0001C 3.	500.		00403	00820	00660	00940	00945
	0055		C 1117	C 111 1	01351							
07/25/88	0955	1.0	S ANT	2MM	5KY 5U 27.2		EAR MINNOWS I	7.8	.2	. 06	14.	64.
					00010	00095	5 00389	00403	00620	00660	00940	00945
					3. 01351	940. 31616	5					

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

		· · · ·)									
DW0322 1910.0162						ONITORING NE	TWORK SAMI RT: 01/01/88 HO RIVER BAS	TO 06/01/93	INVENTORY		P	AGE 00032
STATION NO. 1910.0162	SALAD	Y - ATION	BEXAR Locati K at N	ON ORTHEAST		USGS GAGE NO	0 08 1 78 '	700	RIVER MILE	L 2	ATITUDE / LONG 19 30 57 098	GITUDE 25 47
SAMPLE DATE	TIME		SOURC AGENC		PARAMETER MEA	SUREMENTS:	VALUE/ - /CODE -					
08/29/88	1035	1.0	S ANT	SMN	FLOW GOOD	. PARTLY CLO	UDY					
					26.7 00010	760. 00095	8.2 00389	7.7 00403	.07 00620	.02 00660	36. 00940	154. 00945
					60. 31616							
10/24/88	0945	1.0	S ANT	SMN	CLOUDY							
					19.4 00010	570. 00095	8.1 00389	7.8 00403	.05 00620	34. 00940	80. 00945	3. 01351
					70. 31616							
11/28/88	1005	1.0	S ANT	SMN	PARTLY CL	OUDY						
					10.6 00010	650. 00095	8.8 00389	7.7 00403	.01 00620	.01 00660	37. 00940	82. 00945
					3. 01351	< 10. 31616						
04/24/89	0830	1.0	S ANT	SMN	PARTLY CL	OUDY						
					22.2 00010	330. 00095	8.8 00389	8.0 00403	6. 00940	24. 00945	3. 01351	20. 31616
07/24/89	1025	1.0	S ANT	SMN	27.2 00010	410. 00095	8.2 00389	8.2 00403	.03 00620	. 03 00660	16. 00940	51. 00945
					2. 01351	80. 31616	171. 70300					

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

.

.

•

•

.

•

•

									jj
DW0322 1910.0162	· .		NITORING NET OD OF REPORT	WORK SAMPL 1: 01/01/88 TO 10 RIVER BASIN	06/01/93			PAG	ie 00033
STATION ND. 1910.0162	SEGMENT - SALADO CREEK COUNTY - BEXAR Station Location Salado Creek at Northeas 410 in San Antonio	U	SGS GAGE NO	0817870	D RI	VER MILE	LATIT 29 30		
PARAMETER 00010 00389 00620 00940 01351 70300	DESCRIPTION: TEMPERATURE, WATER (DEGR OXYGEN,DISS., LAB ANAL B NITRATE NITROGEN, TOTAL CHLORIDE (MG/L AS CL) FLOW: 1=DRY,2=LOW,3=NORMA RESIDUE,TOTAL FILTRABLE	Y PROBE OF FIELD (MG/L AS N) L.4=Flood,5=Abov	E NORMAL	PARAM 0009 0040 0066 0094 3161	5 SPECI 3 PH (S 0 PHOSP 5 SULFA	TANDARD UNII Phate, ortho Te (Mg/L As	(MG/L AS PD4)		1/ 100ML
EFFECTIVE Date	DEPTH SOURCE (FT) Agency	SEGMENT STANDA		/ CODE					
10/01/67	1.0 TDWR	32. 00010н 200. 00945н	90. 00011H 2000. 31616H	901.64 00095н 550. 70300н	5.0 00299L	5.0 00300L	9.0 00400H	6.5 00400L	50. 00940H

3

•

•

•

•

•

		(E			<u>برا الم</u>		ات ا				~) ~
DW0322 1910.0168			•	STATEWIDE	MONITORING RIDD OF REP SAN ANT	NETWORK S) M M I S S I Sampling Data 18 to 06/01/9 Basin	INVENTORY		PΑ	AGE 00034
STATION ND. 1910.0168	SEGMENT COUNTY - STATION SALADO CREE 410 NORTH)	BEXAR	4	LOOP	USGS GAGE	NO 08 1	78700	RIVER MILE			SITUDE 25 40
SAMPLE DATE		SOURCE	SYSTEM P CODE -	ARAMETER ME	ASUREMENTS:	VALUE/ /CODE					
04/04/89	1030 1.0	TEXAS	SMN	STANDING	WATER ONLY	NO FLOW					
04/04/89	1030 1.0	TWCIS	SMN	22.8 00010	430. 00094	5.0 +00300	7.6 00400	119. 00410	5. 00530	2. < 00535	.02 00610
				< .01 00620	. 1 00665	< .01 00671	8. 08800	23. 00940	59. 00945	1. 01351	2. 32211
				< 2. 32218	0. 74069						
09/13/90	1400 1.0) SARA	SMN	FLOW SEV	ERITY 5						
				24. 00010	184. 00095	5.7 00300	6.9 00400	< .01 00610	.0200 00615	.850 00620	.240 00665
				. 160 00671	9.9 00680	2.9 00940	2.2 00945				

J

•

٠

.

SYMBOL (+) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

						3 _3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
DW0322 1910.0168			(ASWATE Ionitoring Netwo 100 of Report: San Antonio Distric	DRK SAMPLIN 01/01/88 TO C RIVER BASIN				PA	AGE 00035
STATION ND. 1910.0168	SEGMENT - SALADO CREEK COUNTY - BEXAR STATION LOCATION SALADO CREEK AT LOS PATIOS 410 NORTH)		USGS GAGE NO	08 1 7 8 7 0 0	RIVE	R MILE			SITUDE 25 40
PARAMETER 00010 00095 00400 00530 00610 00620 00671 00940 01351 32218	DESCRIPTION: TEMPERATURE, WATER (DEGREE SPECIFIC CONDUCTANCE (UMHO PH (STANDARD UNITS) RESIDUE, TOTAL NONFILTRABL NITROGEN, AMMONIA, TOTAL (NITRATE NITROGEN, TOTAL (M PHOSPHORUS, DISSOLVED ORTH CHLORIDE (MG/L AS CL) FLOW: 1=DRY,2=LOW,3=NORMAL, PHEOPHYTIN-A UG/L SPECTROP	S/CM @ 25C) E (MG/L) MG/L AS N) G/L AS N) DPHDSPHDRUS(N 4=FLOOD,5=ABC	IG/L AS P) DVE NDRMAL	PARAME1 00094 00300 00410 00535 00615 00665 00680 00945 32211 74059	SPECIFI OXYGEN. ALKALIN RESIDUE NITRITE PHDSPHO CARBON. SULFATE CHLOROP	C CONDUCTA DISSOLVE ITY, TOTAL NITROGEN RUS, TOTAL TOTAL OR (MG/L AS HYLL-A UG/	L (MG/L AS C E NONFILTRAB , Total (MG/ L, Wet Metho Ganic (Mg/L	UMHOS/CM @ 2 ACO3) LE (MG/L) L AS N) D (MG/L AS F AS C)	>)
EFFECTIVE · Date	DEPTH SOURCE (FT) AGENCY	SEGMENT STAND	ARDS: VALUE/	DE					
10/01/67	1.0 TDWR	32. 00010H	90. 00011H	901.64 00095H	5.0 00299L	5.0 00300L	9.0 00400H	6.5 00400L	50. 00940H
		200. 00945H	2000. 31616H	550. 70300H					

•

J

435 Isom Road, Suite 228

San Antonio, TX 78216

(210) 340-0343

REPORT OF SAMPLE ANALYSIS

To: David Givler Gaddis Simpson Engineers 7073 San Pedro San Antonio, TX 78216

CLIENT INFORMATION

LABORATORY INFORMATION

	Project Nam	le:	
1	Sample ID:	SAN GERONIMO CREEK	
	Date Taken:		
	Time Taken:	1700	

l

PCS Sample #: 28721 Date Rec'd: 5/25/93 Time Rec'd: 0800 Report Date: 6/1/93

TEST DESCRIPTION	Sample <u>Result</u>	UNITS	date <u>Analyzed</u>	METHOD USED
pH	8.3	s.u.	5/25/93	4500-H+ B
BOD5	1	mg/L	5/25/93	5210 B
TSS	16	mg/L	5/25/93	2540 D
Ammonia-N	<0.1	mg/L	5/25/93	4500-NH3 B/E
Phosphate, Ortho	0.050	mg/L	5/25/93	365.4
Conductivity, Specific	455	umhos/cm	5/25/93	120.1
Total Dissolved Solids	280	mg/L	5/25/93	160.1
iron	<0.01	mg/L	5/25/93	200.7/6010
	62	mg/L	5/31/93	200.7/6010
Magnesium	18	mg/L	5/31/93	200.7/6010
Hardness as CaCO3	228	mg/L	5/31/93	330.2
Sodium	8	mg/L	5/31/93	200.7
Manganese	<0.01	mg/L	5/25/93	200.7/6010
Alkalinity, Total	186	mg/L	5/31/93	310.1
Alkalinity, Bicarbonate	227	mg/L	5/31/93	2320 E
	37		5/25/93	4500-SO4 H
Sulfate		mg/L		4500-304 H 4500-Cl H
Chloride	13	mg/L	5/25/93	4500-C1 P 340.1
Fluoride	0.51	mg/L	5/26/93	
Nitrate-N	0.14	mg/L	5/31/93	352.1
Coliform, Fecal	380	col/100 mL	5/25/93	9222 I

Approved by:

& Wallzin

PCS Sample#: 28721

Enter cation results in mg/l

mg/l Iron: mg/l Ca : mg/l Mg : mg/l Na : mg/l K : mg/l Mn :	0.01 62.00 18.00 8.00 0.01	me/l Iron: me/l Ca : me/l Mg : me/l Na : me/l K : me/l Mn :	0.0004 3.0938 1.4796 0.3480 0.0000 0.0004
	Sur	n Cations(me/l):	4.9222
Enter anion resul	ts in mg/l		
mg/1 CO3 :		me/1 CO3 :	0.0000
mg/l HCO3:	227.00	me/l HCO3:	3.7228
mg/1 SO4 :	37.00	me/1 SO4 :	0.7696
mg/l Cl- :	13.00	me/l Cl- :	0.3666
mg/l Fl- :	0.51	me/l Fl- :	0.0268
mg/1 NO3 :	0.14	me/l NO3N:	0.0023

Sum Anions (me/l):

4.8881

%ERROR = : 0.3476

ŀ

P ļ

Ł

M ŧ.

-{ لفققا

· - J

435 Isom Road, Suite 228

(MAR)

1

R)

ŋ.

Ø,

3

80

San Antonio, TX 78216

(210) 340-0343

REPORT OF SAMPLE ANALYSIS

To: David Givler Gaddis Simpson Engineers 7073 San Pedro San Antonio, TX 78216

CLIENT INFORMATION

Project Name: Sample ID: BALCONES CREEK Date Taken: 5/24/93 Time Taken: 1800 LABORATORY INFORMATION

PCS Sample #: 28720 Date Rec'd: 5/25/93 **Time Rec'd:** 0800 **Report Date:** 6/1/93

TEST DESCRIPTION	Sample <u>Result</u>	<u>units</u>	date <u>Analyzed</u>	Method <u>USED</u>
рН	8.3	s.u.	5/25/93	4500-H+ B
BOD5	<1	mg/L	5/25/93	5210 B
TSS	2	mg/L	5/25/93	2540 D
Ammonia-N	<0.1	mg/L	5/25/93	4500-NH3 B/E
Phosphate, Ortho	0.031	mg/L	5/25/93	365.4
Conductivity, Specific	480	umhos/cm	5/25/93	120.1
Total Dissolved Solids	276	mg/L	5/25/93	160.1
('ron	<0.01	mg/L	5/25/93	200.7/6010
`,Calcium	72	mg/L	5/31/93	200.7/6010
Magnesium	12	mg/L	5/31/93	200.7/6010
Hardness as CaCO3	228	mg/L	5/31/93	330.2
Sodium	5	mg/L	5/31/93	200.7
Manganese	<0.01	mg/L	5/25/93	200.7/6010
Alkalinity, Total	228	mg/L	5/31/93	310.1
Alkalinity, Bicarbonate	278	mg/L	5/31/93	2320 B
Sulfate	21	mg/L	5/25/93	4500-SO4 E
Chloride	10	mg/L	5/25/93	4500-Cl B
Fluoride	0.43	mg/L	5/26/93	340.1
Nitrate-N	<0.1	mg/L	5/31/93	352.1
Coliform, Fecal		col/100 mL	5/25/93	9222 D

Approved by:

allow huch K

PCS Sample#: 28720

Enter cation results in mg/l

mg/l Iron:	0.01	me/l Iron:	0.0004
mg/l Ca :	72.00	me/l Ca :	3.5928
mg/l Mg :	12.00	me/1 Mg :	0.9864
mg/l Na :	5.00	me/l Na :	0.2175
mg/lK :		me/1 K :	0.0000
mg/l Mn :	0.01	me/l Mn :	0.0004
	Su	m Cations(me/l):	4.7975
Inter anion res	ults in mg/l		
ng/1 CO3 :		me/1 CO3 :	0.0000
ng/l HCO3:	278.00	me/l HCO3:	4.5592
ng/l SO4 :	21.00	me/1 SO4 :	0.4368
ng/l Cl- :	10.00	me/1 Cl- :	0.2820
ng/1 F1- :	0.43	me/1 F1- :	0.0226
mg/1 NO3 :	0.09	me/l NO3N:	0.0014

ERROR = : -4.9953

ĺ

[.

P

Section (

l.

and the second

. . 1 .

435 Isom Road, Suite 228

San Antonio, TX 78216

(210) 340-0343

REPORT OF SAMPLE ANALYSIS

To: David Givler Gaddis Simpson Engineers 7073 San Pedro San Antonio, TX 78216

CLIENT INFORMATION

LABORATORY INFORMATION

Project Name:	PCS Sample #: 28709
8 Sample ID: SALADO CREEK RUNOFF	Date Rec'd: 5/24/93
Date Taken: 5/24/93	Time Rec'd: 1545
Time Taken:	Report Date: 6/1/93

Sample had heavy suspended and collodial solids present.

5210 B 2540 D
2540 D
5210 B 2540 D
4500-NH3 B/E
365.4
120.1
160.1
200.7/6010
200.7/6010
200.7/6010
330.2
200.7
200.7/6010
310.1
2320 B
4500-SO4 E
4500-Cl B
340.1
352.1
9222 D
200.7/6010
200.7/6010

Approved by:

PCS Sample#: 28709

í

٤_

ſ

No.

800

.

Enter cation results in mg/l

mg/l Iron: mg/l Ca : mg/l Mg : mg/l Na : mg/l X : mg/l Mn :	6.73 40.00 1.00 0.99 0.07	me/l Iron: me/l Ca : me/l Mg : me/l Na : me/l K : me/l Mn :	0.2409 1.9960 0.0822 0.0431 0.0000 0.0025
	Sun	a Cations(me/l):	2.3647
Enter anion resu	ilts in mg/l		
mg/1 CO3 :		me/1 CO3 :	0.0000
mg/1 HCO3:	139.00	me/l HCO3:	2.2796
mg/1 SO4 :	34.00	me/1 SO4 :	0.7072
mg/l Cl- :	1.00	me/l Cl- :	0.0282
mg/l F1- :	0.24	me/l F1- :	0.0126
mg/1 NO3 :	0.48	me/l NO3N:	0.0077
	Sun	n Anions (me/l):	3.0353

ERROR = : -12.4185

435 Isom Road, Suite 228

San Antonio, TX 78216

(210) 340-0343

REPORT OF SAMPLE ANALYSIS

To: David Givler Gaddis Simpson Engineers 7073 San Pedro San Antonio, TX 78216

CLIENT INFORMATION

ľ

Contraction of the second

L

(

LABORATORY INFORMATION

P	Project Name: Sample ID: LEWIS CREEK Date Taken: 5/25/93	PCS Sample #: 28722 Date Rec'd: 5/25/93 Time Rec'd: 0945 Bapart Data: 6/1/02
	Time Taken: 0845	Report Date: 6/1/93

TEST DESCRIPTION	SAMPLE <u>Result</u>	<u>units</u>	date <u>Analyzed</u>	Method <u>Used</u>
pH	8.0	S.U.	5/25/93	4500-H+ B
BOD5	<1	mg/L	5/25/93	5210 B
TSS	12	mg/L	5/25/93	2540 D
TSS Ammonia-N	<0.1	mg/L	5/25/93	4500-NH3 B/E
Phosphate, Ortho	0.070	mg/L	5/25/93	365.4
Conductivity, Specific	560	umhos/cm	5/25/93	120.1
Total Dissolved Solids	320	mg/L	5/25/93	160.1
(Tron	0.27	mg/L	5/25/93	200.7/6010
, Calcium	95	mg/L	5/31/93	200.7/6010
Magnesium	9	mg/L	5/31/93	200.7/6010
Hardness as CaCO3	272	mg/L	5/31/93	330.2
Sodium	7	mg/L	5/31/93	200.7
Manganese	<0.01	mg/L	5/25/93	200.7/6010
	288	mg/L	5/31/93	310.1
Alkalinity, Total Alkalinity, Bicarbonate	351	mg/L	5/31/93	2320 B
Sulfate	13	mg/L	6/1/93	4500-S04 E
Chloride	11	mg/L	5/25/93	4500-C1 B
Fluoride	0.32	mg/L	5/26/93	340.1
Nitrate-N	0.08	mg/L	5/31/93	352.1
Coliform, Fecal		col/100 mL	5/25/93	9222 D

Approved by:

PCS Sample#: 28722

Enter cation results in mg/l

mg/l Iron:	0.27	me/l Iron:	0.0097
mg/l Ca :	95.00	me/l Ca :	4.7405
mg/l Mg :	9.00	me/1 Mg :	0.7398
mg/l Na :	7.00	me/l Na :	0.3045
mg/lK :		me/1 K :	0.0000
mg/l Mn :	0.01	me/l Mn :	0.0004
	Su	m Cations(me/l):	5.7949
Enter anion resul	lts in mg/l		
		ma/1 002 ·	0 0000

	Sur	n Anions (me/l):	6.3551
mg/1 NO3 :	0.08	me/l NO3N:	0.0013
mg/l Fl- :	0.32	me/1 Fl- :	0.0168
mg/l Cl- :	11.00	me/l Cl- :	0.3102
mg/l SO4 :	13.00	me/1 SO4 :	0.2704
mg/l HCO3:	351.00	me/1 HCO3:	5.7564
mg/1 CO3 :		me/1 CO3 :	0.0000

ERROR = : -4.6107

ſ

L

• • •

435 Isom Road, Suite 228

San Antonio, TX 78216

(210) 340-0343

REPORT OF SAMPLE ANALYSIS

- To: David Givler Gaddis Simpson Engineers 7073 San Pedro San Antonio, TX 78216
 - CLIENT INFORMATION

LABORATORY INFORMATION

Project Name: Sample ID: PLEASANT VALLEY RUNOFF Date Taken: 5/24/93 Time Taken: PCS Sample #: 28708 Date Rec'd: 5/24/93 Time Rec'd: 1545 Report Date: 6/1/93

ŀ_	TEST_DESCRIPTION	Sample <u>Result</u>	<u>units</u>	date <u>Analyzed</u>	Method <u>Used</u>
	pH	8.1	S.U.	5/24/93	4500-H+ B
	BOD5	2	mg/L	5/24/93	5210 B
	TSS	13	mg/L	5/25/93	2540 D
	Ammonia-N	<0.1	mg/L	5/25/93	4500-NH3 B/E
	Phosphate, Ortho	0.216	mg/L	5/25/93	365.4
	Conductivity, Specific	128	umhos/cm	5/25/93	120.1
	Total Dissolved Solids	92	mg/L	5/25/93	160.1
	Iron	1.27	mg/L	5/25/93	200.7/6010
	Salcium	24	mg/L	5/31/93	200.7/6010
	Magnesium	0	mg/L	5/31/93	200.7/6010
	Hardness as CaCO3	60	mg/L	5/31/93	330.2
ſ	Sodium	<1	mg/L	5/31/93	200.7
	Manganese	0.01	mg/L	5/25/93	200.7/6010
	Alkalinity, Total	60	mg/L	5/31/93	310.1
	Alkalinity, Bicarbonate	73	ng/L	5/31/93	2320 B
	Sulfate	9	ng/L	5/25/93	4500-SO4 E
	Chloride	1	ng/L	5/25/93	4500-Cl B
	Fluoride	0.36	ng/L	5/26/93	340.1
ſ	Nitrate-N Coliform, Fecal Iron, Diss(1.2 Micron Filter)	0.21	mg/L col/100 mL mg/L	5/31/93 5/24/93 6/2/93	352.1 9222 D 200.7/6010

Approved by: und Wallpe

Chuck Wallgren Owner

PCS Sample#: 28708

Į

Ţ

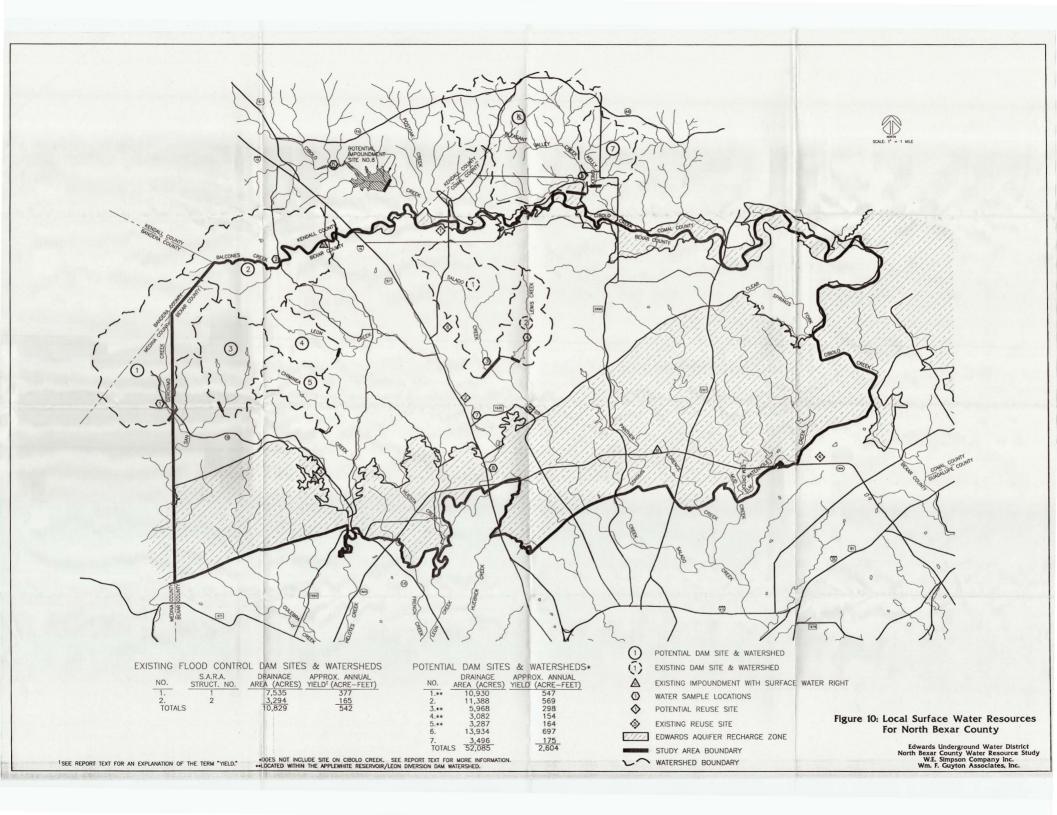
-

a series and a

ľ

L

. .


Enter cation results in mg/l

mg/l Iron: 1.27 me/l Iron: mg/l Ca : 24.00 me/l Ca : mg/l Mg : 0.00 me/l Mg : mg/l Na : 0.99 me/l Na ;	1.1976 0.0000 0.0431
	0.0431
mg/lK: me/lK:	0.0000
mg/l Mn : 0.01 me/l Mn :	0.0004
Sum Cations(me/l):	1.2866
Enter anion results in mg/l	
mg/l CO3 : me/l CO3 :	0.0000
mg/1 HCO3: 73.00 me/1 HCO3:	1.1972
mg/1 SO4 : 9.00 me/1 SO4 :	0.1872
mg/l Cl- : 1.00 me/l Cl- :	0.0282
mg/1 Fl-: 0.36 me/l Fl-:	0.0189
mg/1 NO3 : 0.21 me/1 NO3N:	0.0034

Sum Anions (me/l):

1.4349

ERROR = : -5.4492

