

U.S. Fish & Wildlife Service

San Marcos Aquatic Resources Center

Stygobromus pecki – Background

- ~ 135 species within genus
- 3 sympatric species (S. bifurcates, S. flagellatus, and S. russelli)
 - May represent species complexes
- Stygobromus pecki is well supported as monophyletic (Ethridge et al. 2013)
- Consists of several subpopulations within Comal Springs with sufficient gene flow (Ethridge et al. 2013; Lucas et al. 2016)

Stygobromus pecki – Background

Amphipods in general:

- Continue to molt throughout life
 - Set number of instars?
 - Asymmetrical (e.g. antennal segments, number of spines)
- Females receptive to mating after molt
- Males guard females via amplexus
- Males usually larger than females (Bollache and Cézilly 2004b; Franceschi et al. 2010; Worsham et al. 2017)
- Some amphipods subject to environmental sex determination (ESD) (Sutcliffe 1992; Watt and Adams 1993; McCabe and Dunn 1997)
 - Determined within weeks after leaving the marsupium

Stygobromus pecki – 2018 Objectives

- 100
- 1. Estimate size class sexual maturity is reached
- 2. Estimate fecundity
- 3. Detect difference between immature sympatric congeners
- 4. Estimate growth rates
- 5. Investigate factors affecting sex ratios
- 6. Estimate egg incubation rates

Stygobromus spp. – Egg development

- Investigation initiated in 2017
- Brooding females obtained in coordination with SMARC personnel
- Traced 3 broods
- 58 ± 7.4 days to be released from the mother as free swimming

Stygobromus spp. – Egg development

- Brood chambers
- Neonates flow into tube through mesh female cannot pass
- Prevent cannibalism

Stygobromus spp. - Immature Growth

 2 individuals that have survived for ~ 200 days

• Grew ~1.5 mm

• ~ 2 months between molts

Stygobromus spp. – Immature Growth

- Does body position affect measurements?
- Straight vs. curved

Stygobromus spp. – Immature Growth

- 3-5 photos were taken of 6 individuals each in straight or curved positions at 2 time points
- Digimizer Image Analysis software used to measure body length
- t-test used to compare straight with curved measures
- Variability inspected

Stygobromus spp. – Immature Growth

- In 4 of 11 (36%) comparisons straight and curved were different
 - 3 were longer in curved
- Curved position tends to be more natural
- ***Average 95% confidence interval of curved position was ±0.057 mm
- Combine other measures to determine successive instars (e.g. antennae)

Stygobromus spp. - Immature Species Determination

- Pilot study conducted in 2017 with preserved specimens
- Comal Spring drift samples 2003
 - Presumed to be *S. pecki*
- Spring Lake samples 2008
 - Presumed to be Stygobromus spp. that are not S. pecki
- Looked at character states for different size classes

Example of characters used to distinguish stages of Stygobromus sp.

PCA – Specimen biplot

Stygobromus spp. - Immature Species Determination

- Obtain specimens from both localities
- Use AIC to determine best character for separating immature S. pecki from other species
 - Determined for each size class
 - More complicated models used if 1 character is not sufficient
- Individuals (all species) reared at SMARC used for validation

Stygobromus pecki – Sex Determination

Uropod 1 of male with distal peduncular process

Stygobromus pecki – ESD Investigation

Hypothesis:

 Juveniles with more food achieve a larger body size and have a tendency to become males

• Rationale:

- Other species display ESD to favor male development with larger body size
- Environmental conditions may elicit greater food availability affecting size
- Therefore, food availability may influence sex development

Stygobromus pecki – ESD Investigation

- Utilize *Stygobromus* other than *S. pecki* as surrogate species
- Setup 2 common gardens:
 - LOW Feed less
 - HIGH Feed more
 - Each contain 10 females and 10 males
- Gravid females removed
 - Released neonates placed into nurseries that reflect low and high feeding schedules
- Record:
 - Number of gravid females over time
 - Estimate fecundity (neonates released)
 - Compare sex ratios

Stygobromus pecki - Benefit to Refugia

- Egg Development and Immature Growth:
 - Determine how long eggs develop into breeding adults
- Immature Species Determination:
 - Help ensure refuge collections are correct species
 - Identify size class species can be deciphered
- ESD Investigation:
 - If feeding influences sex ratios, then an understanding of this mechanism should be of interest to captive propagation efforts

Stygoparnus comalensis - Background

- Described from Comal Springs (Barr and Spangler 1992)
- Listed as federally endangered species (USFWS 1997)
 - Since < 150 specimens have been collected
- Known from Comal, Fern Bank, and Sessom Springs
- Adults fully aquatic and respire through plastron
- Larvae encountered less often
 - Habitat unknown
 - Proposed to live in subterranean air pockets (Barr and Spangler 1992)
 - Epigean species inhabit semi aquatic soil adjacent to streams (Brown 1987, Ulrich 1986)
- Female oviposition is unknown (aquatic or terrestrial)

Stygoparnus comalensis – 2018 Objectives

- 1. Identify sexual dimorphic characters
- 2. Determine if eggs are oviposited above or below water
- 3. Estimate fecundity (number of eggs per clutch)
- 4. Egg incubation duration
- 5. Identify larval habitat (submerged or emergent)
- 6. Investigate larval growth rates
- 7. Identify adult response to flow

Stygoparnus comalensis – Sex Identification

Stygoparnus comalensis - Sex Identification

Stygoparnus comalensis – Sex Identification

Stygoparnus comalensis - Reproduction

Oblique Plane Apparatus (OPA)

Stygoparnus comalensis - Reproduction

- OPA pilot initiated 4 Dec, 2017
- Couple encourage to mate
- Migrated to bottom close to flow
- No eggs found
- May consider building smaller device

Stygoparnus comalensis – Flow Preference

- Understand response to flow
 - Adjust different intensities
 - Modular \rightarrow can be modified with side chambers
- Test if response to flow is stronger than food availability
 - Place beetles in rich food source located in opposite direction of flow preference
- Determine flow maximum that could force them to surface
 - Are strong hydrologic events part of the life cycle?

Stygoparnus comalensis – Flow Preference

- Test run
 - Macrelmis sp. 6 each adults and larvae
 - 8 mins each at low, med, and max output
 - Low = 0.04 m/s; Q = 45 mL/s
 - Med = 0.18 m/s; Q = 170 mL/s
 - Max = 0.27 m/s; Q = 196 mL/s
 - 2 larvae and 1 adult in Terrarium
 - 1 larvae in Chamber C
 - 1 larvae and 1 adult in Chamber B
 - 4 adults and 2 larvae in Chamber A

Stygoparnus comalensis - Benefit to Refugia

• Reproduction:

- Current knowledge is depauperate
- Anything learned will be of value to understanding better husbandry and captive propagation techniques

• Flow preference:

• Better understanding of environmental requirements

Heterelmis comalensis

Background:

- Many life-histories aspects have been conceptualized (Bowles et al. 2003, BIO-WEST 2015a, BIO-WEST 2015b, BIO-WEST 2017, Nowlin et al. 2017b)
- Questions remain about behavior to flow variation and food supply

Objectives:

- Continued monitoring of ongoing pupation experiments from 2017
- Identify the behavioral response of adults and larvae to varying flow conditions with food resource effects

Heterelmis comalensis – Investigate Flow Preference

- Same flow apparatus as proposed for Stygoparnus comalensis
 - Same questions
- Use as a surrogate for response to various flow levels
 - Determine flow maxima
 - Establish flow preference
 - Determine if food availability is favored over flow preference

Benefit to Refuge:

 Develop better understanding of habitat and food preferences that contribute to captive propagation

PCA – Loadings

