# San Marcos Salamander Propagation Refinement

**USFWS Staff** 

# San Marcos Salamander Reproduction

- Gonads evaluated by Tupa & Davis 1976
  - → Males mature at 35 mm TL



- → Separated by gravid or not
- +24 pair observed for 10 months
- +7 clutches of eggs
- Flow preferences in regards to tank position (Fries 2002)
- Cohabitation preferences (Thaker et al 2010)



### San Marcos Salamander Reproduction

- Opportunistic
- For a fully functioning refugia, need to be able to reliably reproduce the species
  - ★ Estimate of numbers that can be produced
  - ★ Estimate of time it would take to produce for reintroduction
  - → Need to know the effort involved to be able to reproduce large numbers for reintroduction





#### Objectives

The main goal of this research is to test if reproduction can be reliably triggered by the separation/combine technique.

- 1. Average time to courtship behavior once combined
- 2. Average days to oviposition to occur after sexes combined
- 3. Average clutch size
- 4. Survival rate to hatch of eggs
- 5. Document egg developmental stages
- 6. Test for differences between pairwise vs group mating

# **Expected Benefits to Refugia**

- Potential reliable reproduction technique
- Quantifying egg production and survival
- Documenting egg development





Barton Springs salamander eggs



#### Separation Trigger

- Non-invasive methodology that has worked with Barton Springs salamanders
- Steps:
  - 1. Separate the sexes completely
  - 2. Introduce with physical separation
  - 3. Combine pairs or groups



Barton Springs salamanders displaying courtship behavior.

Methods

# Candling (Gillette & Peterson 2001)



### Separation

- First: males and females in different tanks systems
  - **→** No shared water
  - +One month



Male Tank System

Female Tank System



#### Separation

- Second: males and females in same larger tank, but no physical access to each other
  - → Shared water so pheromones can circulate
    - Males have mental glands (Sever 1985)
  - → Can see through perforated divider
  - ★Three tank systems
  - **→**Two week separation



# Combining

- Pairs and group tanks
  - → Group tanks four females, four males
- Three tank systems
  - → Tanks painted on outside so salamanders can not see into other tanks
  - → Well water and re-circulating water





- 12 Single pairs, 3 tanks with 4 pairs (72 total pairs)
- Habitat items for courtship and egg deposition
- Quieter room, less vibrations





Cheek rubbing

Tail fanning and Spermatophore Deposition



Tail-Straddling walk

### Combining

- Pairs will be randomly selected
- Filmed for courtship behavior analysis
- Tanks checked daily for egg oviposition
  - → Eggs removed to nursery system
- Trial runs for at least 3 months for adults



#### Eggs

- Clutch size documented
- Eggs in individual tanks on nursery system
- Data recorded on visible stage development
- Photograph egg development (time-series)
- Hatch rate calculated



#### Expected deliverables

- Report to EAA on the results of experiment
- Update to Eurycea Captive Propagation manual
- Journal article

