Sessom Creek Sediment Export Study
(EAHCP RFP: #160-17-TESS)

Drs. Benjamin Schwartz, Weston Nowlin, and Thomas Hardy
Aquatic Station
Department of Biology
Texas State University
and
Drs. June Wolfe III and Jaehak Jeong
Blackland Research and Extension Center
Water Science Laboratory
Temple, Texas

Supporting staff and students: Mrs. Gabrielle Timmins, Mr. Victor Castillo, and Mrs. Dalila Loiacomo
Project Tasks:

1. Methodology Development
 1. Collect data on sediment/constituent loading
 2. Calculate sediment/constituent loading curves
 3. Examine the factors that contribute to sediment exports

2. Present Methodology to EAHCP Science Committee

3. Conduct Applied Research
Purpose of the Project

- Collect data required for developing stormwater TSS and nutrient export loading models from Sessom Creek into the San Marcos River
- Examine physical factors contributing to NPS loads
- Produce data and results that will be used to guide stream and riparian remediation and stormwater management efforts in the Sessom Creek watershed
- Generate baseline data that can be used to determine effectiveness of remediation and management efforts after implementation
Data collection methods

- Benjamin Schwartz
- Weston Nowlin
- Thom Hardy
- Gabrielle Timmins
- Victor Castillo
- Dalila Loiacomo

- Field data
- Lab data
- Digital data
Physical Parameters

• Discharge
 – Pressure transducer and state-discharge
 – New radar-based measurements

• TSS, NVSS, VSS
 – ISCO automatic water sampling across storm hydrographs
 – Filtration and combustion

• Nutrients
 – Total Nitrogen (TN) via second-derivative spectroscopy
 – Total Phosphorus (TP) ascorbic acid method

• Precipitation

• Water Quality data (Turbidity)
Discharge

- Pressure transducer and stage-discharge rating curve
- New radar-based discharge data from NOAA – National Severe Storms Lab
New NOAA radar-derived discharge

March 28-29 Sessom Creek Storm Events

Discharge [ft³/s]
Velocity and stage [ft]
Discharge [ft³/s]

v [ft/s]
h [ft]
Q [ft³/s]
USGS San Marcos River discharge

Sessom Creek flood pulses

Delayed Sink Creek flood pulses

--- Provisional Data Subject to Revision ---

△ Median daily statistic (23 years) — Discharge
TSS, NVSS, VSS

- Stormwater samples are filtered onto a weighed glass fiber filters, then dried, and then combusted.
- Difference between dry weight and filter weight = TSS
- Combusted weight allows calculation of NVSS and VSS
Field Duplicate Sampling
Preliminary Sediment Data

Sediment Concentrations in Sessom Creek

- TSS (mg/L)
- VSS (mg/L)
- NVSS (mg/L)
Nutrients

- Splits of stormwater samples are acidified within 48 hours of collection.
- Whole samples are digested and analyzed for total nutrient concentrations (N and P).
Precipitation and Weather Data

• Raingauges will record precipitation at 2–3 sites in the watershed at high temporal resolution

• Rainfall data for historical (2011–2012) data will be obtained from archived data sources, to allow inclusion of those data in models.

• Antecedent conditions will be calculated using publicly available daily weather data (T, RH, Wind Speed, Solar Radiation, etc)
Water Quality Data

- EAA has installed a real-time WQ Monitoring Station at the Freeman Aquatic Building
- After some initial datalogging issues, we also have deployed a YSI sonde as a duplicate instrument.
Questions and comments about data collection methods?
SESSOM CREEK SEDIMENT EXPORT STUDY:
Sediment Discharge Determination Methods

June Wolfe III - Associate Research Scientist
Jaehak Jeong – Associate Professor

Blackland Research and Extension Center
Water Science Laboratory
Temple, Texas
Definitions

• **Concentration:** Amount dissolved, or suspended (within a given amount of water)
 – Expressed as:
 • Mass of per unit volume (e.g., mg/L)

• **Load:** Amount transported (by water), over a given time
 – Types: dissolved, **suspended**, bed
 – Expressed as:
 • Volume per unit time (e.g., m³/hour)
 • Mass per unit time (e.g., Mg/year)

• **Yield:** Amount exported from a defined area (i.e., watershed), over a given time
 – Expressed as:
 • Volume per unit area per unit time (e.g., m³/Ha/Hour)
 • Mass per unit area (e.g., kg/Ha/Year)

• **Rating Curve:** relationship between measured variables (e.g., suspended sediment concentration or load vs. stream discharge)
 – Used to estimate loads, or concentration, during unmeasured periods
Subtask 1.2: Calculate Loading Curves

Determining constituent loads
(i.e., sediment, nutrients, etc.)

• **Empirical methods**
 – Applied when data is plentiful
 – Direct calculation
 – Sum of measured concentrations * measured discharges per time interval

• **Estimation methods**
 – Applied when data is sparse
 – Averaging
 – Ratios
 – Regression
 » USGS Load Estimator tool (LOADEST)
 – Inputs: streamflow, constituent concentrations
 – Outputs: constituent loads and/or constituent concentrations by period of interest (day, month, season, year, etc.), and regression statistics
 – Constituent concentration may not be a simple function of discharge
 – May NOT be applicable to small watershed such as SESSOM CREEK
Subtask 1.2: Calculate Loading Curves

Sessom Creek Sediment Rating Curve
(Storm Runoff, 9 storms, 2010-2011)

\[y = 14.95x^{1.54} \]
\[R^2 = 0.71 \]
Subtask 1.2: Calculate Loading Curves

Sessom Creek Flow Duration Curve
(Single Event - 24 Dec 2010 storm runoff)
Subtask 1.2: Calculate Loading Curves

1) Compile summary statistics
2) Generate sediment loading curves

References:
Subtask 1.3: Examine Factors Influencing Exports

Constituent hysteresis (e.g., concentration lag with respect to flow)

- 5 major types
- Each infers constituent delivery process information
- Often normalized and/or indexed for comparison
Subtask 1.3: Examine Factors Influencing Export
Subtask 1.3: Examine Factors Influencing Exports

Multivariate analysis

- **Response variables**
 - Constituent concentration
 - Constituent load or yield

- **Explanatory variables (15+)**
 - Hydrological variability
 - Runoff amount, intensity, timing
 - Meteorological variability
 - Rainfall amount, intensity, timing

- **Principal Components Analysis (PCA)**
 - Reduces large correlated observed variable set to smaller uncorrelated set
 - Retains as much of the original variance as possible
 - Results may provide standalone insight (i.e., no hypothesis testing)
 - Reduced variable set may be further analyzed
 - ANOVA
 - Regression
Subtask 1.3: Examine Factors Influencing Exports

Data Formatting:
- Spreadsheet i.e., MS Excel

Storm variables Influencing sediment yield

Example output

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>STORM</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEPENDENT</td>
<td></td>
</tr>
<tr>
<td>Sediment Yield (Mg)</td>
<td>0.483 0.057 0.070 0.472 2.878 0.187 0.189</td>
</tr>
<tr>
<td>INDEPENDENT</td>
<td></td>
</tr>
<tr>
<td>Base Flow (m3/s)</td>
<td>0.076 0.074 0.025 0.032 0.007 0.025 0.017</td>
</tr>
<tr>
<td>Peak Flow (m3/s)</td>
<td>0.897 0.289 0.456 0.390 2.379 1.860 0.315</td>
</tr>
<tr>
<td>Total Runoff (m3)</td>
<td>3998 4751 1779 4974 5413 6233 1596</td>
</tr>
<tr>
<td>Runoff to Peak (m3)</td>
<td>584 956 394 425 1229 2374 154</td>
</tr>
<tr>
<td>Runoff after Peak (m3)</td>
<td>3415 3794 1385 4549 4184 3859 1441</td>
</tr>
<tr>
<td>Cumulative Rainfall (mm)</td>
<td>17.8 34.3 24.6 48.5 36.6 53.3 6.1</td>
</tr>
<tr>
<td>Time Since Last Rain (days)</td>
<td>13 11 7 21 36 30 93</td>
</tr>
</tbody>
</table>

Importance of components:
- Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7
 - Standard deviation: 1.8893097 1.2485131 1.0619803 0.7601806 0.36980759 0.171142122 3.789257e-04
 - Proportion of Variance: 0.5099273 0.2226836 0.1611146 0.0825535 0.01953681 0.004184232 2.051209e-08
 - Cumulative Proportion: 0.5099273 0.7326109 0.8937254 0.9762789 0.99581575 0.999999979 1.000000e+00

Component loadings:
- BASE -0.2497092 -0.4294113 0.6406415 0.1215628 -0.28894511 0.4945318 -0.0010636785
- PEAK -0.4017292 0.4130104 0.1421025 -0.4484266 0.23583639 0.6254093 -0.0009776497
- RAIN_L -0.4702800 0.2556434 -0.0171319 0.1579548 -0.82857297 -0.0413102 -0.0004796515
- RAIN_T -0.3175766 -0.3442319 -0.4933004 0.5437363 0.16480674 0.4631343 -0.0007070331
- RUNOFF -0.4435929 -0.3937709 0.1717418 -0.1839033 0.10385909 -0.2360734 -0.7199560942
- RUNOFF_A -0.3973502 -0.4857038 0.0514226 -0.3342755 0.02008384 -0.1923689 0.6741002364
- RUNOFF_P -0.3155613 0.2649822 0.5418552 0.5638941 0.36879185 -0.2352980 0.1650735492

Component Scores:
- PC1 PC2 PC3 PC4 PC5 PC6 PC7
 - Storm1 1.01580770 -0.2168961 1.18571394
 - Storm2 0.01686496 -1.3626810 0.89244237
 - Storm3 2.59551551 1.3570337 -1.41807076
 - Storm4 -1.28022244 -1.7752810 -2.01890968
 - Storm5 -4.08997092 -0.3937709 0.1717418 -0.1839033
 - Storm6 -0.47028000 0.2556434 -0.0171319 0.1579548 -0.82857297 -0.0413102 -0.0004796515
 - Storm7 -0.3175766 -0.3442319 -0.4933004 0.5437363 0.16480674 0.4631343 -0.0007070331
 - Storm8 -0.4435929 -0.3937709 0.1717418 -0.1839033 0.10385909 -0.2360734 -0.7199560942

Data Analysis:
- Statistical software i.e., R
 - Principle Components Analysis (PCA)
 - Example output
Subtask 1.3: Examine Factors Influencing Exports

> Stepwise regression (LinearModel.1, direction='forward/backward', criterion='BIC')

Start: AIC=-0.22
SED_YLD ~ 1

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ PC1</td>
<td>4.4479</td>
<td>1.5517 -8.9618</td>
</tr>
<tr>
<td><none></td>
<td></td>
<td>5.9996</td>
<td>-0.2226</td>
</tr>
<tr>
<td>+ PC2</td>
<td>1</td>
<td>0.8847</td>
<td>5.1149 0.5806</td>
</tr>
<tr>
<td>+ PC3</td>
<td>1</td>
<td>0.0349</td>
<td>5.9646 1.8101</td>
</tr>
</tbody>
</table>

Step: AIC=-8.96
SED_YLD ~ PC1

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ PC2</td>
<td>1</td>
<td>0.8847</td>
<td>0.6670 -13.6366</td>
</tr>
<tr>
<td><none></td>
<td></td>
<td>1.5517</td>
<td>-8.9618</td>
</tr>
<tr>
<td>+ PC3</td>
<td>1</td>
<td>0.0349</td>
<td>1.5168 -7.0644</td>
</tr>
<tr>
<td>- PC1</td>
<td>1</td>
<td>4.4479</td>
<td>5.9996 -0.2226</td>
</tr>
</tbody>
</table>

Step: AIC=-13.64
SED_YLD ~ PC1 + PC2

<table>
<thead>
<tr>
<th>Df</th>
<th>Sum of Sq</th>
<th>RSS</th>
<th>AIC</th>
</tr>
</thead>
<tbody>
<tr>
<td><none></td>
<td></td>
<td>0.6670</td>
<td>-13.6366</td>
</tr>
<tr>
<td>+ PC3</td>
<td>1</td>
<td>0.0349</td>
<td>0.6321 -11.9872</td>
</tr>
<tr>
<td>- PC2</td>
<td>1</td>
<td>0.8847</td>
<td>1.5517 -8.9618</td>
</tr>
<tr>
<td>- PC1</td>
<td>1</td>
<td>4.4479</td>
<td>5.1149 0.5806</td>
</tr>
</tbody>
</table>

Call:
`lm(formula = SED_YLD ~ PC1 + PC2, data = SessomComp)`

Coefficients:
(Intercept) PC1 PC2
0.6686 -0.3947 0.2663

Residual standard error: 0.3652 on 5 degrees of freedom
Multiple R-squared: 0.8888, Adj R-squared: 0.8443
F-statistic: 19.99 on 2 and 5 DF, p-value: 0.004122

INTREPRETATION

1) Both PC1 and PC2 significant at $p \leq 0.05$
2) ~47% of variability in PC1 due to Days Since Last Rain
3) ~49% of variability in PC2 due to Runoff After Peak
4) PC1 and PC2 explain ~84% of observed variability
5) The variables “Days Since Last Rainfall” and “Runoff After Peak” are significant in explaining Sediment Yield
6) Include in future monitoring efforts
7) Consider when developing process-based model
Subtask 1.3: Examine Factors Influencing Exports

1) Constituent hysteresis analysis
2) Multi-criteria analysis

References:

Watershed Assessment

Sessom Creek Watershed

Outlet
- <all other values>

Type
- Linking stream added Outlet
- Manually added Outlet

Reach

Watershed
Basin

Elevation
(ft)
- High: 811.98
- Low: 565.72
SWAT Simulation Strategies

- SWAT subdaily simulation module
- Urban BMPs & Green Infrastructure

Proposed Tasks

1. Build a SWAT model
2. Calibrate flow/sediment
3. Identify critical sources
 - Soil types/Land uses
 - Locations
4. Relate to monitoring data statistics
Questions/Discussion

Blackland Research and Extension Center

June Wolfe III
jwolfe@brc.tamus.edu
(254) 774-6016

Jaehak Jeong
jjeong@brc.tamus.edu
(254) 774-6118