Status of Year 1 and Year 2 Refuge Research

Weston Nowlin
Status of Year 1

- Proposed two experimental studies
- Factors that affect pupation and adult eclosion in CSRB
- Experiment 1
 - Biofilm origin and OM types
 - Field vs SMARC
 - Wood and leaves (WL) vs wood, leaves, cloth (WLC)
- Experiment 2
 - Conditioning of material prior to feeding
 - Conditioned with adult CSRB vs conditioned without
Status of Year 1

- Experiment 1 – Origin and OM type
 - Experiments run from July 2019 to Dec 2019
- Experiment 2 - Conditioning prior to feeding
 - Experiments run from December 2019 to April 2020
Experiment 1

- Treatments replicated 5 times
 - 3 late-stage larvae per tube

- Assessed
 - Larval and pupal mortality
 - Pupation rate
 - Adult eclosion
 - Composition of biofilms (microbial)
 - Nutritional composition of biofilms
 - Carbohydrates, lipids, proteins, C:N
Experiment 1

• Summary
 • Larval mortality ~15% on average across the entire experiment
 • Similar to previous work
 • Pupation occurred in all treatments
 • 53 pupae
 • ~200 larvae
 • Very limited adult eclosion
 • 3 adults produced
 • From Comal biofilms
 • 0.05 adults/pupae
Experiment 1

• Summary
 • Larval mortality ~15% on average across the entire experiment
 • Similar to previous work
 • Pupation occurred in all treatments
 • 53 pupae
 • ~200 larvae
 • Very limited adult eclosion
 • 3 adults produced
 • From Comal biofilms
 • 0.05 adults/pupae
Experiment 1

• Summary
 • Larval mortality ~15% on average across the entire experiment
 • Similar to previous work
 • Pupation occurred in all treatments
 • 53 pupae
 • ~200 larvae
 • Very limited adult eclosion
 • 3 adults produced
 • From Comal biofilms
 • 0.05 adults/pupae
Experiment 1

- **Microbial biofilm composition**
 - Sequenced biofilms on different substrates grown at different locations
 - >5200 microbial genera detected
 - Dominated by Proteobacteria (26% of sequences) and Bacteriodetes (8.2%)
 - Substrate type and location contribute to microbial composition (PERMANOVA, Jacard distances)

<table>
<thead>
<tr>
<th>Source</th>
<th>Sum of sqrs</th>
<th>df</th>
<th>Mean square</th>
<th>F</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td>0.012435</td>
<td>2</td>
<td>0.0062174</td>
<td>1.149</td>
<td>0.0013</td>
</tr>
<tr>
<td>Location</td>
<td>0.013812</td>
<td>2</td>
<td>0.0069062</td>
<td>1.2763</td>
<td>0.0001</td>
</tr>
<tr>
<td>Interaction</td>
<td>0.002153</td>
<td>4</td>
<td>0.00053825</td>
<td>0.099469</td>
<td>0.1133</td>
</tr>
<tr>
<td>Residual</td>
<td>0.070346</td>
<td>13</td>
<td>0.0054112</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.098746</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experiment 1

- SMARC biofilms
- Higher dominance score
- Lower Shannon diversity
- Typical of captive food sources
Experiment 1

- *Chrysochromulina*
 - Most differential microbial genus between sites
- Eukaryotic haptophyte
- Wood biofilms from SMARC lack genes involved in denitrification
Experiment 1

- Carbohydrates, lipids, proteins, C:N
 - Analyses ongoing
- Expectation to complete all work by Feb 2021
 - Final report
Research in Year 2

- Pupal survival rates low
- Understand reasons for this

- Experiment 1
 - Effects of access to air – water interface and facilitation of pupal survival

- Experiment 2
 - Effects of frequent handling/checking on pupal survival
Access to Air – Water Interface

- Pupae likely hydrophobic
 - Buoyant
 - Coated in hydrophobic setae
 - Not well documented

- Other Elmidae pupate above water, but preliminary data (Huston et al.) suggests that CSRB need at least partial submergence

- Current practice – keep in flow through chambers
Access to Air – Water Interface

- Experimental design
 - House late-instar larvae in two chamber types
 - Standard flow though chambers
 - Flow through chambers with air – water interface
Access to Air – Water Interface

- Experimental design
 - House late-instar larvae in two chamber types
 - Standard flow though chambers
 - Flow through chambers with air – water interface
 - Larval and pupal survival, adult eclosion
- Photo-document and describe pupal setae and potential hydrophobicity
Access to Air – Water Interface

• Status
 • Experiments conducted from July – October 2020

• Mortality, pupae produced, adults produced
Frequency of Handling

• Current round of experiments check larvae and pupae weekly
 • Coated in setae
 • Fragile?
 • Preliminary observations suggest rough or frequent handling reduces hydrophobicity
• How often should we check pupae?
 • Does handling damage setae?
Frequency of Handling

• Used “air – water interface” chambers
• Check larvae on either (a) weekly or (b) monthly basis
 • Track survival of larvae and pupae
• Sub-set of pupae and photo-document/describe pupae external morphology at the two handling regimes
Frequency of Handling

• Experiment conducted July – October 2020

• Data analysis phase

• Pupal photography is ongoing
 • Slowly proceeding

• Hopeful to have things completed by February 2021
Timeline

• **Year 1**
 • Finish final lab analyses by Feb 2021
 • Final Report by end of Feb

• **Year 2**
 • Finish data analysis
 • Final Report by end of Feb