

Status of Year 1

- Proposed two experimental studies
- Factors that affect pupation and adult eclosion in CSRB
- Experiment 1
 - Biofilm origin and OM types
 - Field vs SMARC
 - Wood and leaves (WL) vs wood, leaves, cloth (WLC)
- Experiment 2
 - Conditioning of material prior to feeding
 - Conditioned with adult CSRB
 vs conditioned without

Status of Year 1

- Experiment 1 Origin and OM type
 - Experiments run from July 2019 to Dec 2019
- Experiment 2 Conditioning prior to feeding
 - Experiments run from December 2019 to April 2020

- Treatments replicated 5 times
 - 3 late-stage larvae per tube
- Assessed
 - Larval and pupal mortality
 - Pupation rate
 - Adult eclosion
 - Composition of biofilms (microbial)
 - Nutritional composition of biofilms
 - Carbohydrates, lipids, proteins, C:N

- Summary
 - Larval mortality ~15% on average across the entire experiment
 - Similar to previous work
 - Pupation occurred in all treatments
 - 53 pupae
 - ~200 larvae
 - Very limited adult eclosion
 - 3 adults produced
 - From Comal biofilms
 - 0.05 adults/pupae

Summary

- Larval mortality ~15% on average across the entire experiment
 - Similar to previous work
- Pupation occurred in all treatments
 - 53 pupae
 - ~200 larvae
- Very limited adult eclosion
 - 3 adults produced
 - From Comal biofilms
 - 0.05 adults/pupae

Summary

- Larval mortality ~15% on average across the entire experiment
 - Similar to previous work
- Pupation occurred in all treatments
 - 53 pupae
 - ~200 larvae
- Very limited adult eclosion
 - 3 adults produced
 - From Comal biofilms
 - 0.05 adults/pupae

- Microbial biofilm composition
 - Sequenced biofilms on different substrates grown at different locations
 - >5200 microbial genera detected
 - Dominated by Proteobacteria (26% of sequences) and Bacteriodetes (8.2%)
 - Substrate type and location contribute to microbial composition (PERMANOVA, Jacard distances)

Source	Sum of sqrs	df	Mean square	F	р
Substrate	0.012435	2	0.0062174	1.149	0.0013
Location	0.013812	2	0.0069062	1.2763	0.0001
Interaction	0.002153	4	0.00053825	0.099469	0.1133
Residual	0.070346	13	0.0054112		
Total	0.098746	21			

- SMARC biofilms
 - Higher dominance score
 - Lower Shannon diversity
- Typical of captive food sources

- Chrysochromulina
 - Most differential microbial genus between sites
 - Eukaryotic haptophyte
- Wood biofilms from SMARC lack genes involved in denitrification

- Carbohydrates, lipids, proteins,
 C:N
 - Analyses ongoing
- Expectation to complete all work by Feb 2021
 - Final report

Research in Year 2

- Pupal survival rates low
- Understand reasons for this
- Experiment 1
 - Effects of access to air water interface and facilitation of pupal survival

- Experiment 2
 - Effects of frequent handling/checking on pupal survival

• Pupae likely hydrophobic

Buoyant

• Coated in hydrophobic setae

Not well documented

• Other Elmidae pupate above water, but preliminary data (Huston *et al.*) suggests that CSRB need at least partial submergence

• Current practice – keep in flow through chambers

- Experimental design
 - House late-instar larvae in two chamber types
 - Standard flow though chambers
 - Flow through chambers with air water interface

- Experimental design
 - House late-instar larvae in two chamber types
 - Standard flow though chambers
 - Flow through chambers with air water interface
 - Larval and pupal survival, adult eclosion
- Photo-document and describe pupal setae and potential hydrophobicity

- Status
 - Experiments conducted from July October 2020
 - Mortality, pupae produced, adults produced

Frequency of Handling

- Current round of experiments check larvae and pupae weekly
 - Coated in setae
 - Fragile?
 - Preliminary observations suggest rough or frequent handling reduces hydrophobicity
- How often should we check pupae?
 - Does handling damage setae?

Frequency of Handling

- Used "air water interface"
 chambers
- Check larvae on either (a)
 weekly or (b) monthly basis
 - Track survival of larvae and pupae
- Sub-set of pupae and photodocument/describe pupae external morphology at the two handling regimes

Frequency of Handling

- Experiment conducted July October 2020
- Data analysis phase
- Pupal photography is ongoing
 - Slowly proceeding
- Hopeful to have things completed by February 2021

Timeline

- Year 1
 - Finish final lab analyses by Feb 2021
 - Final Report by end of Feb
- <u>Year 2</u>
 - Finish data analysis
 - Final Report by end of Feb

