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Executive Summary

In the karst terrain of the Edwards Aquifer System in central Texas, groundwater recharge occurs through
a combination of discrete (Rds) and diffuse (Rdf) mechanisms. The majority of recharge occurs as Rds from
perennial base flow in major rivers and episodically from losing stream reaches in the numerous creeks,
while a smaller proportion occurring through infiltration and percolation through the vadose zone is Rdf.
Whereas Rds can be estimated from discharge measurements above and below the recharge zone (Puente,
1978), Rdf is highly dynamic both spatially and temporally and is difficult to quantify due to the complex
nature of soils and varied degrees of karstic porosity in the unsaturated zone (e.g., the vadose zone) above
the aquifers. Thus, Rdf presents one of the largest uncertainties in the water budget used to model these
aquifers. The ability to quantify Rdf could significantly improve long-term groundwater management and
land conservation practices. In this project, we conducted multiscale field observations, remote sensing,
and numerical modeling studies to evaluate a water-balance-based estimate of Rdf. The water balance
components were independently studied using numerous hydrometeorological datasets, including
precipitation (PPT), potential evapotranspiration (PET), actual ET, and soil water storage.

ET was measured directly using the eddy-covariance method at three sites, each operated on the Camp
Bullis Training Site of Joint Base San Antonio (Camp Bullis) from 2016 through 2018. These sites were
chosen to cover the range of vegetation and leaf-area indices (LAI) common across the major drainages
crossing the Edwards/Trinity recharge zone, including (1) closed cedar woodland, (2) open oak-savanna,
and (3) open grassland. Satellite-derived ET was developed for Camp Bullis using vegetation indices, which
are good indicators of vegetation greenness, canopy structure, and temporal dynamics of water use. Of
the four indices tested, the Enhanced Vegetation Index (EVI) was found most stable for our sites. Using an
empirical model between measured ET and leaf area index, monthly maps of ET-estimated from EVI were
derived from 2004 to 2018 for the entire Cibolo Basin (Basin #7). Finally, we compared these values to a
spatially explicit vadose zone model (HYDRUS-1D) at a 500-m scale. The model was validated at all
monitoring sites and the monthly EVI-ET estimates taken from Camp Bullis. Recharge calculated from
HYDRUS-1D was assumed to be Rdf.

Results (Figure ES-1) of the analyses highlight the nuanced differences between the traditional estimate
of recharge using the USGS method (Puente, 1978) and the HYDRUS-1D model. Note the former includes
both discrete and diffuse recharge and is estimated over the Edwards only, while the latter assumes only
diffuse recharge and doesn’t distinguish between geologic outcrop of the Edwards or Trinity Group rocks
(aquifer outcrop). The results show significant year-over-year variability in recharge. Following the 2011
drought, recharge remained very low for four additional years, showing the impact of that drought event
on long-term recharge. The analyses highlight the importance of interannual variability on hydrologic
response, and how separating diffuse recharge from total recharge can provide a more holistic
understanding of the hydrology of the region of the Edwards and Trinity aquifers.
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Figure ES-1: Annual total recharge in Cibolo Basin (discrete and diffuse) estimated from the USGS, and
diffuse recharge estimated from HYDRUS.

The following list summarizes key findings of this study:

1. The ratio of annual diffuse recharge to precipitation (Rdf/PPT), estimated from the HYDRUS model,
ranged from 0 to 8%. This equates to a volume of annual diffuse recharge that ranges from
essentially 0 acre-ft in 2008 to 87,000 acre-ft in 2004, which is equivalent to 8% of the total
precipitation for that year. When compared to the established Puente method, the Rdf ranged
from 0 to 90% of total recharge (diffuse and discrete), with an average of 32%. However, when
compared to other water balance methods, including the water balance method developed in this
study, Rdf accounts for between 0 and 30% of the total recharge. Our calculated percentage is
similar to the 26% (Rdf/Total Recharge) reported by Ockerman (Ockerman, 2007).

2. Of the four precipitation products evaluated, those that use rain gage data to refine and correct
the precipitation estimates (e.g., RainVieux) perform better than those that do not. North
American Land Data Assimilation System (NLDAS) was particularly poor with high biases, whereas
gridMET and PRISM were both consistent. Results indicate that using rain gages as control points
for precipitation estimates is critical when rainfall is locally intense and highly variable. Moreover,
because diffuse recharge originates from precipitation, errors in precipitation will compound
throughout the water balance.

3. Calculating PET from meteorological variables requires air temperature and humidity, wind speed,
and solar radiation. Of these, wind speed and maximum relative humidity have the most
uncertainty and lowest correlation to the gridded products available, whereas air temperature
and minimum relative humidity are most highly correlated. In particular, gridMET-derived PET is
more comparable to the meteorological stations than NLDAS, which has a monthly bias nearly 3
times higher than other methods.

4. The uncertainty and temporal dynamics in soil water storage are difficult to constrain in the water
budget, but are potentially extremely important. For example, results showed that variations in
monthly soil water storage can be more than 40% of ET. Of the NLDAS models tested here (Noah,
Mosaic, and VIC), the change in soil water storage can range from ±16 to ±50 mm/month when
assuming the soil depth is 40 cm.

5. The regression equation used to extend the eddy covariance measurements of ET to regional
estimates is more accurate between EVIs of 0.23 and 0.44, which represents at least 64% of the
region during any given month from 2000 to 2018, and more than 80% of the region ~90% of the
time. Yearly ET/PPT can vary greatly between years and can be anywhere between 0.45 for a wet
year to 1.35 for a dry year.
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Recommendations and future research needed:

 Maintain/expand onsite weather and soil monitoring across EAA Region—The field
measurements conducted for EAA focused on processes only at Camp Bullis. To better understand
how recharge changes across the entire EAA region, especially in the drier, western regions, and
to better parameterize other basins (e.g., Nueces-West Nueces River Basin), we recommend
redeploying existing EC stations in different geographic areas of EAA’s Region and maintaining the
stations for at least a full year, preferably longer, to observe interannual variability.

 Automate blending of in-situ data and satellite remote sensing (or land surface models) - Research
findings show that diffuse recharge can be a significant part of the groundwater recharge
component of the water balance, but that variability in time and space complicates projections.
To better understand how the intensive data collection at Camp Bullis can be extrapolated to
other areas, we recommend developing and implementing an approach that will produce a soil
moisture map of high spatial and temporal resolution over the EAA region.

 Apply multivariate regression or machine learning algorithms to predict weather/hydrology
variables of interest, including diffuse recharge – Results from this project showed that soil water
storage is critically important to diffuse recharge, but significant uncertainties are present in the
current soil water storage estimates, due to uncertainties on soil hydraulic properties, soil
horizon/types, and soil water content observations. Future effort should consider developing a
data analytics workflow that optimally merges high-resolution satellite remote sensing data,
outputs of land surface models, and in-situ data, to create high-resolution soil moisture maps
across large EAA areas with lower uncertainty.

 Assess land use change on diffuse recharge – Results of this study indicate that approximately 10-
12% of total precipitation is recharged through diffuse and discrete routes, and that
approximately 30% of total recharge is through diffuse routes (or, ~4% precipitation). We
recommend overlaying population projections, estimates of roads, physical structures, etc., and
other diversion features onto the diffuse recharge tomograms obtained from numerical models
(e.g., HYDRUS), and then determine whether associated land-use change could alter the diffuse
recharge because of reduced pervious surfaces, or discrete recharge because of surface water
routing toward or away from river reaches that are known to recharge aquifers.

 Investigate the role of epikarst, which comprises highly weathered carbonate bedrock
immediately beneath the land surface or beneath the soil, in diffuse recharge. Hydraulic
properties of epikarst are highly heterogeneous. The varied degree of karst development,
existence of low permeability evaporite layers in the Glen Rose, and faulting likely play an
important role in determining where recharge occurs more efficiently or less efficiently. Future
studies should add epikarst representation in models to further constrain recharge estimates.
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1. Introduction

Climate, topography, geology, vegetation, and soil exert control on groundwater recharge. Mean annual
precipitation explains 80% of the variation in recharge across Texas (Keese et al., 2005), but the diversity
of these five factors makes local recharge estimates difficult to quantify, particularly in karst terrains
where the landscape is underlain by soluble rock that contains dissolution features such as fractures,
caves, and sinkholes. Karst aquifers, such as the Edwards Aquifer System in Texas, are some of the most
productive groundwater resources in the world. The Edwards Aquifer System, consisting of a set of karst
aquifers that are variably connected, including the Edwards-Trinity (Plateau) Aquifer, the Edwards
(Balcones Fault Zone) Aquifer, and the Edwards (Washita Prairies) Aquifer (Hackett, 2019), provides most
water resources across central Texas.

In the karst terrain of the Edwards/Trinity aquifers, recharge occurs through a combination of discrete
(Rds) and diffuse (Rdf) mechanisms (Figure 1-1). All recharge originates as precipitation that either
infiltrates in the contributing area above the recharge zone, runs off the contributing area, or falls directly
on the recharge zone, becoming Rds (Figure 1-2). Since the 1980s, annual groundwater recharge to the
Edwards/Trinity aquifers has been estimated using a water-balance equation in which recharge within
each watershed is the difference between measured streamflow above and below the recharge area
(Puente, 1978). Focused recharge or Rds occurs through faults, fractures and dissolution features in
ephemeral stream channels as storm water flows across the recharge zone (Figure 1-2). Rdf initiates as
precipitation infiltrates into the soil in the inter-stream areas where it is stored, and then slowly released
downward by gravity, or upward by evapotranspiration. In the latter case, water is used by vegetation as
transpiration (T) or lost through the soil surface as evaporation (E). Combining the two becomes
evapotranspiration (ET). As pore water pressures increase in the vadose zone, gravity pulls the water
downward, deeper within and below the root zone and into the epikarst where it can become Rdf.

Most groundwater recharge to the Edwards/Trinity aquifers originates episodically as Rds from losing
stream reaches while a smaller, less temporally dynamic proportion is Rdf (Maclay, 1995; Marclay, 1995;
Wong et al., 2012). Whereas Rds can be estimated from discharge measurements above and below the
recharge zone, Rdf is difficult to quantify due to the complex nature of soils, varied degrees of karstic
porosity in the unsaturated zone above the water table (e.g., the vadose zone) of the aquifers, and the
different domains in the soil/upper epikarst that store or rapidly transmit water depending on degree of
saturation and precipitation rate. The diffuse component is assumed minor in comparison to Rds because
potential ET (PET) is quite high in central Texas. Maclay (1995) suggested 85–90% of all precipitation is
lost to ET and most recharge estimates assume Rdf on the annual scale is a constant percentage of annual
precipitation. However, such approaches neglect changes in soil water, epikarst, and groundwater storage
(Wilcox, 2008), suggesting a water-balance approach may be more appropriate. For example, Dugas et al.
(1998) quantified ET using the Bowen ratio method and estimated that stream flow was 20% of
precipitation; by differencing alone, ET would be 80% of precipitation. However, their measured values of
ET were significantly lower than others (approximately 65% of precipitation), suggesting Rdf can be
significant.

To date, research results are conflicted on the source of water for ET, with some findings suggesting water
sourced from epikarst, (Wilcox and Huang, 2010; Wilcox et al., 2005; Wong and Banner, 2010), even
though plant available water may be disconnected from deeper sources (Kukowski et al., 2013; Schwartz
et al., 2013). These previous studies have sought to understand the extent to which soil moisture



2

contributes water for root uptake, given the common perception that soils in the Texas Hill Country are
shallow with little water holding capacity (Wilcox et al., 2007; Woodruff and Wilding, 2008). It is known
that the water storage capacity of soil and epikarst influence long-term ET, more so than differences in
woody cover (Heilman et al., 2014; Schwartz et al., 2013), with little evidence of deeper soil water usage
(i.e., tapping groundwater) or evidence of deep rooting (Heilman et al., 2009; Schwinning, 2008). These
studies suggest a decoupling of epikarst water storage from plant-available water, even though most
water loss is still through ET. As the studies noted above suggest, diffuse recharge may play a more
significant role in karst aquifer recharge in areas like the Edwards-Trinity Plateau. Even within the general
category of diffuse recharge, the soil/epikarst has at least two distinct domains where the flow differs:
matrix dominated and fissure/macropore dominated. Several studies have suggested a piston-like process
where water stored in the soil matrix is pushed downward by subsequent precipitation, during relatively
dry conditions, or where “new” water from precipitation could mostly bypass the matrix and flow through
fissures/macropores during wet conditions (Perrin et al., 2003; Aquilina et al., 2006; Schwinning, 2008);
Thus, there is substantial memory in near-surface soil/epikarst (0–5 m) storage that can partition rainfall
into plant-available water that moves upward through ET or downward through recharge, potentially at
different rates.

Figure 1-1: Conceptualization of discrete and diffuse recharge mechanisms, and the geologic and
hydrologic units of the Edwards-Trinity aquifer system (from Gary and Smith, 2017).
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Figure 1-2: The location of the study area in Camp Bullis within the nine major drainage basins of the
Edwards/Trinity aquifers. The primary aquifer zones include the drainage areas of the contributing zones
to the north, the recharge zone of exposed Edwards Limestone over the Balcones Fault system, and the
artesian or confined zone.

This project developed and evaluated a water balance–based estimate of inter-stream (or diffuse)
recharge (Rdf) through multiscale observation and modeling. It focuses on karstic landscapes in which the
presence of woody vegetation points to substantial water loss pathways through ET. The goal of this study
is, therefore, to investigate the Rdf component of the water balance and improve recharge estimates by
exploring actual evapotranspiration (ET) in more detail. This goal also required that we compare different
methods of estimating the water balance components and then use the best method based on spatio-
temporal stability and comparisons with field-collected data. Once the best methods were determined,
they were incorporated into a workflow used to achieve the above-stated goal. The steps in the workflow
include:

1) Develop a regression relationship between point-scale ET estimates using eddy covariance
measurements with remote sensing data;

2) Implement the relationship to produce basin-scale maps;

3) Evaluate the components of the water balance including precipitation, ET, runoff, and storage; and

4) Quantify the recharge and compare to other methods of estimation.
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2. Materials and Methods

2.1 Study Area

Camp Bullis (28,000 acres or ~12,730 hectares), a U.S. Department of Defense training facility in northern
Bexar County, Texas, overlays both the Edwards and Trinity aquifers. The extent of Camp Bullis covers two
drainage basins: Cibolo/Dry Comal Creek Basins (henceforth called Cibolo) and the area between the
Medina River and Cibolo/Dry Comal Creek Basins (henceforth called Medina-Cibolo) (Figure 1-2).

Based on normal precipitation (the average over the past 30 years), in Cibolo Basin, the highest annual
rainfall occurs in the northwest part and gradually decreases toward the southeast. Medina-Cibolo has
higher rainfall in the north with less annual rainfall in the south (PRISM, 2018) (Figure 2-1). The mean-
annual precipitation for the Cibolo and Medina-Cibolo Basins are 879 and 857 mm/year respectively. The
landcover for Cibolo Basin is mostly savanna (42%) and evergreen forests (37%) with isolated areas of
developed lands (13%) and grasslands (6%) (Yang et al., 2018). The Medina-Cibolo Basin has distinctly
more development, especially in the eastern portion of the basin (37%). The remainder of the landcover
is evergreen (cedar) forest (36%) and savanna (23%). Within the Camp Bullis area, above average rainfall
was recorded in 2016 and 2018, whereas below average rainfall was recorded in 2017.

Figure 2-1: The Camp Bullis study region and the two major drainages, with Cibolo to the north and the
area between Medina and Cibolo to the south. The green dots are Edwards Aquifer Authority PET (potential
evapotranspiration) stations and the yellow dots are eddy covariance stations. The upper right figure is
the 30-year normal annual precipitation (PRISM, 2018). The bottom figure is the landcover from the
National Land Cover Database (NLCD) (Homer et al., 2020).
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The Edwards Aquifer is contained within the Cretaceous limestones of the Edwards Group, which is
capped by the Del Rio Clay and overlies the Trinity Aquifer. The Trinity Aquifer consists of three parts,
including the upper member of the Glen Rose Formation at the top, the lower member of the Glen Rose
Formation and the Cow Creek Limestone Member in the middle, and the Hosston Formation and overlying
Sligo Formation at the bottom part (Mace et al., 2000). The Edwards Plateau is exposed Edwards
Limestone in the drainage area and is bounded by the Balcones Fault Zone, forming the southern
boundary of the Texas Hill Country. Displacement across the high-angle normal fault network can result
in offset of the Edwards Group of over 100 m (Maclay and Small, 1983), creating flow paths with
significantly variable permeability (Figure 1-1). The upper and lower confining units of the Edwards are
the Del Rio Clay and Glen Rose respectively, which sit atop the Trinity Group. The Edwards Group (Kainer
Formation) covers the southeastern third of Camp Bullis; the northern two-thirds is primarily Glen Rose
limestone (Gary et al., 2013).

Soils of the Edwards aquifer Contributing Zone are generally calcareous, loamy skeletal soils derived from
interbedded dolostone and limestone and are more generally called the Brackett-Eckrant-Real group. The
more resistant layers of the Glen Rose Formation are interbedded with softer “marl” that erodes more
easily, resulting in a tread-and-riser landform pattern (Wilcox et al., 2007; Woodruff and Wilding, 2008)
with shallow soils of the series on the treads and deeper soils on hillslopes and valley bottoms.

Vegetation on the Edwards aquifer is a mix of grassland savannas and woodlands, with the latter
encroaching into grasslands over the past 150 years (van Auken, 2000). Woody vegetation at Camp Bullis
consists primarily of Texas live oak (Quercus fusiformis) and evergreen Ashe juniper (Juniperus ashei) with
an understory of curly mesquite shortgrass (Hilaria belangeri); bunchgrasses such as purple three-awn
(Aristida purpurea), sideoats grama (Bouteloua curtipendula), and red grama (Bouteloua trifida); and
sedges (Carex texensis). Both live oak and juniper are evergreen, transpiring throughout the winter
season. Grasses, however, are seasonally dormant.

2.2 Diffuse Recharge and Quantification of the Water Balance

The availability of water resources and its accounting begins with a water budget that is applied over some
representative volume. The water balance equation is shown as:

𝑃 + 𝑄𝑖𝑛 = 𝐸𝑇 + 𝑑𝑆 + 𝑄𝑜𝑢𝑡 Eq. 2.2-1

in which P is precipitation, Qin is flux in as either surface or subsurface flow, dS is change in storage either
in the soil or epikarst, and Qout is flux out as either surface runoff (RO) or diffuse recharge (Rdf). If Qin is
negligible, Rdf is obtained as the residual of the water balance equation:

𝑅𝑑𝑓 = 𝑃 − 𝐸𝑇 − 𝑑𝑆 − 𝑅𝑂 Eq. 2.2-2

In this research, we quantify these components at varying temporal and spatial scales, obtaining
representative estimates of Rdf. We assess several products to get accurate values of P across the study
areas, and we use eddy covariance (described in Section 2.3) to measure ET at specific areas and satellite
data to upscale it. In this framework, dS is measured at the same locations as the eddy covariance (i.e.,
only a few specific locations) and RO is essentially unmeasured. However, using a numerical model, in this
case HYDRUS, we can estimate each component, compare the upscaled fluxes, and resolve the potential
error in Rdf. Figure 2-2 shows the generalized workflow.
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Figure 2-2 Generalized workflow of data collection and analysis

2.3 Field Data Collection

As inferred above, the approach used in this research uses field data as control points for satellite remote
sensing and other products available from public and private third parties. Here, field data collection
primarily focuses on eddy covariance (EC) as a direct measurement of ET upwind of the instrument (known
as the fetch) over an area with a radius approximately 100 times the instrument height above the canopy
(known as the flux footprint). This footprint depends on instrument height, surface roughness, and
thermal stability. EC towers consist of a three-dimensional anemometer to measure temperature and
wind speed and direction, and an open-path infrared gas analyzer (IRGA) to measure gas concentration
(i.e., humidity and carbon dioxide). Instruments are installed approximately 1.2 m above the height of the
vegetation. The anemometer rapidly samples rotating eddies of air to determine the total concentration
of vertical flux, which is represented as the covariance of the vertical component of the velocity (measured
with the anemometer) and the concentration of water (or carbon) molecules (measured with the IRGA).
Measurements are usually collected every 0.1 seconds and averaged over 30 minutes to obtain 48 ET flux
estimates per day.

Three EC sites were operated from 2016 to 2018 on the Camp Bullis property on three different landcovers
(Figure 2-1), so that differences in ET between the sites could be attributed to differences in vegetative
function. These three sites include (i) a closed cedar woodland (Woodland) in the southern portion, (ii) an
open oak savanna (Savanna) located in the northern portion, and (iii) a centrally located open grassland
(Grassland). At the Woodland and Savanna sites, an open-path analyzer and sonic anemometer (IRGASON,
Campbell Scientific, Logan, UT) with an electronics module (EC100, Campbell Scientific) was used to
measure high-frequency (10 Hz) water vapor and CO2 fluxes, as well as the three-dimensional wind vector.
At the Woodland site, the IRGASON was installed on scaffolding at a height of 8.6 m facing south (173°),
with measurements starting in May 2016. At the Savanna site, the IRGASON was mounted on a tower at
a height of 7.3 m facing south-southeast (130°), with measurements starting in April 2016. At the
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Grassland site, an LI-7500a (LI-COR, Lincoln, NE) measured 10-Hz water vapor and CO2 concentrations,
and a 3D-sonic anemometer (CSAT3, Campbell Scientific) facing south-southeast (170°) measured the
wind vector; both instruments were installed on a tripod at a height of 2.5 m, with measurements
beginning in April 2017. Calibration of the EC systems occurred biannually, during November and May of
each season, using a dew point generator (LI-610, LI-COR), a zero-gas reference, and a 500-ppm CO2

standard. Data collection ceased in January 2019 at all sites.

Additional meteorological and soil moisture measurements were collected at each site every 30 minutes.
All stations were equipped with a tipping-bucket rain gage (TE525, Texas Electronics, Dallas, TX) and a net
radiometer (NR-LITE or CNR4, Kipp & Zonen, Delft, Netherlands). Soil moisture and temperature were
recorded using water content reflectometers (CS655, Campbell Scientific) at a depth of 5 cm under the
canopy and in the interspace at the Woodland site. At the Savanna site, CS655 sensors were installed at 5
(2), 10, and 20 cm. At the Grassland site, five water content sensors (model TDR315, Acclima, Meridian,
ID) were used to measure soil moisture and soil temperature at 5 (2), 10, 20, and 50 cm depths. Soil heat
flux was measured using soil heat flux plates (HFP01, Hukseflux Delft, Netherlands) installed at a depth of
8 cm and two averaging thermocouples (TCAV, Campbell Scientific) installed above and below the heat
flux plate.

Much like the water balance (Eq. 2.3-1), EC fluxes are validated against the energy budget (units of W/m2)
given as:

𝑅𝑛 − (𝐻 + 𝐿𝐸 + 𝐺) = 0 Eq. 2.3-1

in which net radiation (Rn) is balanced by sensible heat (H), the latent heat of vaporization (LE), and soil
heat flux (G) according to conservation of energy. Additional details are presented in Section 2 of the
Appendix. Here, we force energy balance closure, assuming any extra energy is evenly split between the
measured EC fluxes of H and LE.

Lastly, five PET stations (HOBO, Onset Computer Corporation, Bourne, MA) operated by Edwards Aquifer
Authority (EAA) provide 15-minute data of air temperature, atmospheric pressure, dew point
temperature, relative humidity, wind speed and direction, soil moisture, and precipitation from 2016 to
2018. The EAA-operated stations are shown in Figure 2-1 and include Headquarters Cave and Acan in the
southern portion of Camp Bullis, Salado and High Hill in the middle, and Well 10 which is very near the
Savanna site in the northern extent of Camp Bullis.

2.4 Datasets and Processing

2.4.1 Precipitation

Multiple precipitation datasets were compared to in-situ data measurements taken at Camp Bullis. One
such dataset, known as the Parameter-elevation Regressions on Independent Slopes Model (PRISM)
climate mapping system, combines topography and gage data to produce daily precipitation at 4 km
resolution (Daly et al., 2008). Daily data for PRISM are available to 1981, but PRISM has a historical
monthly dataset that is modeled by starting with the 30-year normal going back to 1895. Another, the
North American Land Data Assimilation System Phase 2 (NLDAS-2), is made available at 0.125° spatial
resolution and 1-hour temporal resolution from 1979 to the present. Precipitation from NLDAS is derived
by disaggregating daily precipitation gage data from the Climate Prediction Center, located at the
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National Centers for Environmental Prediction (NCEP) and using the PRISM algorithm with an orographic
enhancement, whereas other data from NLDAS-2 like wind speed, air temperature, and specific humidity
are derived from NCEP North American Regional Reanalysis (NARR) (Mesinger et al., 2006). RainVieux, a
third precipitation dataset, produces hourly gage-adjusted Nexrad rainfall data at a 4-km spatial resolution
for the San Antonio segment of the Balcones Fault Zone of the Edwards Aquifer from 2003 to present. The
final precipitation dataset used in this study was gridMET (Abatzoglou, 2013). The gridMET dataset, which
is a daily dataset at ~4-km (1/24°) spatial resolution and spans from 1979 to the present, blends the spatial
attributes of PRISM with the temporal attributes of NLDAS-2. PRISM and Gridmet are available at daily
timesteps while NLDAS and Vieux are available in hourly timesteps.

Monthly precipitation from PRISM, NLDAS-2, RainVieux, and gridMET were compared to observations
from our five PET stations and three EC stations. The coefficient of determination (R2) and root mean
squared difference (RMSD) were used to assess performance. R2 is defined as:

𝑅2 = ቌ ∑ (𝑋𝑖 − 𝑋ത)(𝑌𝑖 − 𝑌ഥ )𝑛
𝑖 = 1

ට∑ (𝑋𝑖 − 𝑋ഥ )2𝑛
𝑖 = 1 ∑ (𝑌𝑖 − 𝑌ഥ )2𝑛

𝑖 = 1

ቍ

2

Eq. 2.4-1

in which 𝑋ത and 𝑌ത  are the mean of the X and Y, and n is the total number of observations. An R of ~1
indicates a perfect linear correlation. RMSD provides an error measurement in the comparable units and
a minimal value being ideal:

𝑅𝑀𝑆𝐷 = ට∑ (𝑋𝑖 − 𝑌𝑖)2𝑛
𝑖 = 1

𝑛
Eq. 2.4-2

2.4.2 Potential Evapotranspiration (PET)

The Penman-Monteith method (Allen et al., 1998) requires maximum and minimum temperature, daily
average dewpoint temperature (equivalently, vapor pressure or vapor pressure deficit or relative
humidity), wind speed and downward shortwave radiation. Temperature, relative humidity, wind speed,
and solar radiation for the five meteorological stations were compared on a daily basis to NLDAS and
gridMET using linear regression. Pressure, which is an output at the meteorological stations, is not
included in the gridMET dataset but can be estimated using elevation:

𝑃 = 101.3 ቀ293−0.0065𝑧
𝑧

ቁ
5.26

Eq. 2.4-3

According to Allen et al. (Allen et al., 1998), a high R2 and a slope between 0.7 and 1.3 indicates good
relationship between data. NLDAS and gridMET wind speed, which are both expressed at 10 m height,
were converted to 2 m assuming a vegetation height of 0.12 m and logarithmic wind profile. PET between
the five meteorological stations was also compared to gridMET and NLDAS. NLDAS uses the modified
Penman scheme of Mahrt and Ek (1984) while gridMET uses the Penman-Montieth equation (Allen et al.,
1998). A more detailed explanation of Equation 2.4-4 can be found in Section 1 of the Appendix:

𝑃𝐸𝑇 =
∆(𝑅𝑛 − 𝐺) + 𝜌𝑐𝑝ቀ

𝑒𝑠 − 𝑒𝑎
𝑟𝑎

ቁ

∆ + 𝛾ቀ1 + 𝑟𝑠
𝑟𝑎
ቁ

Eq. 2.4-4
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2.4.3 Soil Water Storage

The change in soil water storage (dS) from 0–10 cm was obtained from the 5-cm soil moisture sensor for
each meteorological station and compared to the monthly 0–10 cm dS simulated by Noah (Chen et al.,
1996; Ek et al., 2003), Mosaic (Koster and Suarez, 1992), and VIC (Liang et al., 1994; Wood et al., 1997),
which are three different land-surface models incorporated into the NLDAS-2 suite from 2016 to 2018.
The soil water (in mm) estimated at the beginning of the month was subtracted from the soil water
estimated at the end of the month to get the monthly change in storage (dS). Because the average soil
depth to a restrictive layer is less than 1 m (Soil Survey Staff, 2014) at the sites used in this study, soil
water from 0–10 cm and 10–40 cm were summed to get soil water from 0-40 cm. The monthly dS of the
land surface models was compared to the monthly dS using both shallow and deep soil moisture sensors.
The NLDAS-Noah model was then used to determine dS in the water balance equation for the long-term
recharge study.

2.4.4 Evapotranspiration

2.4.4.1 Eddy Covariance Data Processing

Data from the Savanna and Woodland sites, using the IRGASONs, were processed using Campbell
Scientific’s EasyFlux program. The system with the LI-COR equipment (at the Grasslands site) was
processed similarly using LI-COR’s EddyPro software. Section 2 of the Appendix describes the EC
processing steps that include many corrections, including frequency corrections and air density,
fluctuations in sonic temperature and humidity, and axis and tilt rotation. Further processing such as gap
filling must be done, which is also described in Appendix Section 2. Due to factors still being studied in the
scientific community, the surface energy fluxes are often underestimated by 10−30% relative to the
available energy (Foken et al., 2012; Wilson et al., 2002a). LE and H can be adjusted to force closure while
maintaining a constant Bowen ratio (β), which is the ratio between H and LE as shown in Equations 2.4-5
and 2.4-6 (Blanken et al., 1997; Lee, 1998; Twine et al., 2000):

𝐿𝐸𝑐𝑜𝑟𝑟 = (𝑅𝑛 − 𝐺)
1 + 𝛽

Eq. 2.4-5

𝐻𝑐𝑜𝑟𝑟 = 𝐿𝐸𝑐𝑜𝑟𝑟 × 𝛽 Eq. 2.4-6

Energy balance (Eq 2.3-1) states the difference between Rn and G (the available energy) should equal the
sum of the sensible heat flux (H) and latent heat flux (LE) (the surface energy flux). Thus, ET has a direct
relationship with the latent heat flux described in Equation 2.4-7:

𝐸𝑇 = 𝐿𝐸
𝜆𝜌𝑤

Eq. 2.4-7

in which LE is latent heat flux, λ is the latent heat of vaporization of water, and ρw is the density of the
water.
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2.5 Satellite-Derived and Numerical Model Estimates of ET

2.5.1 Satellite-Derived Evapotranspiration

Vegetation indices (VI) and pixel quality from Landsat 7 and 8 Collection 1 for Camp Bullis were acquired
through USGS’s Earth Resources Observation and Science (EROS) Center Science Processing Architecture
(ESPA) (https://espa.cr.usgs.gov/). The spectral indices include normalized difference vegetation index
(NDVI), soil adjusted vegetation index (SAVI), modified soil adjusted vegetation index (MSAVI), and
enhanced vegetation index (EVI). Each index is an indicator of vegetation greenness, plant health, and
canopy cover. The high chlorophyll absorption in green vegetation reflects little radiation into the visible
spectrum but more into the near-infrared due to leaf tissue and water content scattering the light. NDVI
is the simplest vegetation index and uses the near-infrared and red bands. SAVI adds a constant soil-
brightness correction factor, whereas MSAVI improves SAVI by using a recursive soil-brightness function.
Finally, EVI not only accounts for soil background, but also includes an atmospheric resistance term and a
blue band that accounts for background noise, atmospheric noise, and saturation. Further explanation of
the vegetation indices is described in Section 3.1 of the Appendix. The VIs were masked for clouds and
interference using the quality-assessment band.

A monthly maximum composite of each VI at each EC station was determined using monthly averages
measured within a radius that approximates the upwind footprint containing 90% of the ET flux. A second-
order polynomial was implemented to relate the monthly observed ET to the composite VI, using the VI
corresponding to 0 (no lag), +1 (month), and −1 (month) lags. Lags were investigated to determine if the
plants stopped transpiring before there was a reduction in the VIs. The final regression error for EVI was
found using a 1000-run bootstrap that sampled 33% of the monthly ET data for training and the remaining
67% for validation.

The regression equation between EVI and ET was implemented from 2000 to 2018 on the two major
drainage basins that overlie Camp Bullis. Google Earth Engine was used to find the maximum monthly EVI
from Landsat 5, 7, and 8 Collection 1 over the major drainages. The maximum monthly VI composite for
the basins was filled at time (t) by linearly interpolating at t by first using t ±1 then t ±2. The regression
was then applied to the gap-filled composite EVI to develop monthly ET maps. The upper end of ET was
limited to the potential evapotranspiration (PET) obtained from gridMET. If VI-derived ET was less than
zero, it was replaced with zero.

Multiple gridded ET products were compared using the RMSD, R2, and mean bias error (MBE) for the
results of the monthly VI-derived ET for the two study basins for 2016 through 2018. The MBE is used to
find the average bias and can be found using:

𝑀𝐵𝐸 = ∑ (𝑋𝑖 − 𝑌𝑖)𝑛
𝑖 = 1

𝑛
Eq. 2.5-1

in which X and Y are the simulated and observed values respectively. Products used for comparison
include those from land-surface models like NLDAS-Noah, NLDAS-Mosaic, and NLDAS-VIC. The mean of
the land surface model was also evaluated against the ET, as Xia et al. (Xia et al., 2014) found that using a
mean ensemble of the land surface model performs better than the individual models. Finally, the
evapotranspiration product from the Moderate Resolution Imaging Spectroradiometer (MODIS)
(MOD16A2) for an 8-day composite with a 500-m resolution was also used for comparison. A description
of these models can be found in Section 3.2 of the Appendix.
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2.5.2 Numerical Model Estimates

For numerical simulations, we used HYDRUS-1D (Simunek et al., 2012; Simunek et al., 2016), which
simulates water flow in variably saturated porous media using a finite element method to solve a one-
dimensional Richards equation based on a mass-conservative iterative scheme (Celia et al., 1990). The
one-dimensional simulations were solved over a 500 m grid parameterized with soil data at 30 m
resolution, spatially explicit (4 km) daily rainfall totals from RainVieux, potential evapotranspiration from
gridMET (Abatzoglou, 2013), and vegetation class (Friedl et al., 2010) and weekly leaf area index from
MODIS (Myneni et al., 2015) at 500 m resolution. The 30 m soil data were scaled up to 500 m using nearest
neighbor method, while the 4 km rainfall and potential evapotranspiration were scaled down to 500 m,
also using the nearest neighbor method.

The model was parameterized with hydraulic soil properties obtained from the POLARIS data set (Chaney
et al., 2019) that derived 30 m probabilistic soil properties from terrain and soils data in the National
Cooperative Soil Survey Soil Geographic Database (SSURGO) and gridded SSURGO database (Soil Survey
Staff, 2014). In addition, the SSURGO depth of soil to restrictive horizon was rasterized onto the POLARIS
grid and used to define the maximum depth of the soil profile within a given POLARIS soil layer. POLARIS
consists of six soil layers with boundaries at depths of 5, 15, 30, 60, 100, and 200 cm. Monthly fluxes (ET)
were compared between the HYDRUS model and ET-EVI. Recharge estimates are classified as Rdf. Basin
recharge was found by summing values from each 500 m x 500 m cell over the whole drainage basins.
These recharge estimates were then compared to the total recharge from the USGS-(Puente, 1978)
method.

Model performance was assessed using RMSD (eq. 2.4-2); unbiased root mean squared difference
(ubRMSD), in which the mean values of both the simulation and observations is removed; coefficient of
determination (R2); and Nash-Sutcliffe model efficiency (NSE) (Nash and Sutcliffe, 1970) as:

𝑁𝑆𝐸 = 1 −ට
∑ (𝑋𝑖 − 𝑌𝑖)2𝑛
𝑖 = 1

∑ (𝑋𝑖 − 𝑋ഥ 𝑖)2𝑛
𝑖 = 1

eq. 2.5.2-1

in which X and Y are daily observed and simulated values respectively, and 𝑋ത is the mean of the
observations. For a model to perform better than using Xഥ, NSE must be >0; perfect efficiency is achieved
with an NSE of 1. A threshold value of NSE >0.5 is generally suggested (Moriasi et al., 2007; Ritter and
Muñoz-Carpena, 2013), below which the relationship is not considered acceptable.

More detail on the vadose-zone numerical modeling is presented in Section 5 of the Appendix.

2.5.3 Additional Recharge Modeling

Recharge modeling was performed using multiple approaches, ranging from analytical solutions to fully
numerical solutions, to cross-validate the EVI-ET results.

2.5.3.1 Water Balance

Recharge is estimated using a water balance as the difference between water inputs and outputs, namely,
precipitation as input and ET, runoff, and soil water storage as output from 2000 to 2018. Precipitation,
ET, and soil water storage were discussed above. Runoff was evaluated at yearly and monthly time scales
from discharge measurements taken at gage 08185000 (Cibolo Creek in Selma, TX) for the Cibolo



12

watershed and gage 08178700 (Salado Creek at Loop 410, San Antonio, TX) for the Medina Cibolo
watershed. We then compared our calculated recharge to estimates from the USGS and methods
described in Section 2.5.3.3.

3. Results

3.1 Precipitation

In a direct comparison between gridded precipitation datasets of varying spatial resolution, PRISM,
RainVieux, and gridMET precipitation products yielded far better performance statistics than NLDAS when
compared to the EAA/UT operated stations (

Table 1). Whereas the RMSD for PRISM, RainVieux, and gridMET were on the order of 10–20 mm/month
and R2 was near 1, the RMSD for NLDAS monthly rainfall was generally 80–100 mm with low correlation
(0.4 < R2 < 0.6) to gages. The minimum RMSD for NLDAS was 68 mm with a maximum R2 <0.60. The average
RMSD for PRISM was 23 mm, whereas RMSD for both RainVieux and gridMET was 19.5 mm. We found
that the PRISM, RainVieux, and gridMET precipitation products were highly correlated to the precipitation
stations operated during this study (R2 >0.90), with the smallest RMSD of 5.1 mm obtained for the
RainVieux dataset. A major difference between these precipitation products is that NLDAS assumed an
average of 185 mm of rainfall from September to October 2018 (Figure 3-1), whereas PRISM, RainVieux,
and gridMET estimated 700, 599, and 703 mm, respectively; the monitoring stations measured an average
of 671 mm with a standard deviation of 66 mm. We note that PRISM and gridMET products are first
released as a provisional product; final products are then released at least 1 month later. Also, the spatial
scale of NLDAS is much larger at ~12.5 km versus RainVieux and gridMET at ~4 km. RainVieux tends to
underpredict precipitation by an average of 4.9 mm/month, whereas PRISM and gridMET tend to
overpredict precipitation by an average of 6.5 and 8.5 mm respectively. The RMSD for the southern
stations (Woodland, Headquarters Cave, and Acan) was smallest for the gridMET precipitation product.
Results therefore indicate that NLDAS should not be used further, whereas the performances of the other
3 products were comparable.

Figure 3-1: Precipitation (PPT) for the Camp Bullis area from 2016 to 2018.
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We assume that the rain gages used in this study are accurate, level, and properly functioning; however,
tipping-bucket rain gages tend to under-collect due to inefficient tipping under high-intensity events and
raindrops splashing out of the small-diameter orifices of the gage itself (WMO, 2008). Here, we note that
radar corrections for precipitation typically use data from ground gages, and the RainVieux product likely
ingests EAA gages into its correction algorithm; thus, they are not independent. The gages used at the EC
sites managed by The University of Texas are not used to correct RainVieux, which explains why the
RMSDs are generally higher and correlation slightly lower for the other precipitation products. Also,
neither PRISM nor gridMET were any less accurate than RainVieux; however, both are more readily
available at no-cost at daily timesteps and with a spatial resolution (4 km), similar to RainVieux (an 800 m
PRISM product is available for a cost). The latency for both gridMET and PRISM is 2–3 days, and both
datasets include other ancillary variables such as daily maximum/minimum air temperature and humidity.
Wind speed and solar radiation are available only from gridMET.

3.2 Potential Evapotranspiration (PET)

The cumulative distributions of maximum, minimum, and average air temperature and humidity, average
wind speed, and solar radiation from the five EAA PET stations, NLDAS, and gridMET indicate good
correspondence between air temperatures and solar radiation at each of the sites, but discrepancies in
windspeed were higher (Figure 3-2). In particular, the cumulative error in PET (Figure 3-2f) shows that PET
from NLDAS is consistently higher. Comparisons of temperature and minimum relative humidity between
gridMET and the EAA stations were quite good (R2 > 0.7) (Table 2). The correlation for windspeed,
however, varies from R2 = 0.23 for Headquarters Cave to R2 = 0.72 for Well 10. Wind speed obtained from
NLDAS and gridMET products are consistently overpredicted when compared to the EAA meteorological
stations. The lowest correlation (R2 = 0.29) was recorded for maximum relative humidity. Results show
that PET for gridMET is more comparable to the meteorological stations than NLDAS (Table 3). The
average RMSD for PET using a daily timestep is 1.54 mm/day for gridMET and 3.80 mm/day for NLDAS.
On a monthly timestep, the average RMSD for gridMET is 37 versus 109 mm/month for NLDAS. Overall,
NLDAS seems to yield a significantly high bias in PET. Time series of the monthly values of the sites closest
to the EC towers are shown in Figure 3-3.



14

Figure 3-2: Comparison of daily meteorological variables from Edwards Aquifer Authority PET stations and
land surface models (NLDAS and gridMET).
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Figure 3-3: Time series comparison of ET between the land surface models in NLDAS, which use the
modified Penman scheme of Mahrt and Ek (1984), gridMET, which uses Penman-Montieth
evapotranspiration, Penman-Montieth evapotranspiration from the nearest Edwards Aquifer Authority
site (Highhill), and ET from the eddy covariance site.

3.3 Soil Water Storage

For water balance estimates of Rdf, the change in soil water storage may be extracted from the NLDAS
model output suite which includes the Noah, Mosaic, and VIC land-surface models, all driven by the same
atmospheric forcings. Table 4 shows the comparison to observations at PET and EC sites at Camp Bullis.
When comparing the 0–10 cm monthly dS, on average VIC is the least comparable to the station data (R2

of 0.50 and RMSD of 5.9 mm/month) whereas Noah is the most comparable (R2 of 0.80 and RMSD of 4.6
mm/month). Correlation to Mosaic was mixed, with a slightly improved R2 (0.82) but a poorer RMSD (5.13
mm/month). Results show that the bias is less than 1 mm for all sites. When soil depth is increased to 0–
40 cm, VIC continues to perform the worst (R2 of 0.68 and RMSD of 17.36 mm/month) whereas Noah and
Mosaic perform similarly.

Figure SI1 shows the comparison of the average monthly change in soil water storage (dS) from 2016 to
2018 between gridded soil moisture products. The largest range of dS was found in Mosaic, whereas the
lowest range was found in VIC. The change in soil water storage for the Cibolo Basin using Mosaic ranges
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from −50 to 46 mm/month, whereas VIC ranges from −14 to 16 mm/month. The monthly storage depends
on the timing of the rainfall during that month. For example, if a large rainfall event occurs on the last day
of the month, soil water storage will have a substantial positive storage response.

The monthly average change in soil water storage (dS) for Noah from 2000 to 2018 for both basins is less
than 0.1 mm with a standard deviation of 6.5 mm for Cibolo Basin and 7.8 mm for the Medina-Cibolo
Basin (Figure SI2). The average difference between the two basins is 0.1 mm with a standard deviation of
5 mm. The largest increase in storage (36 mm) for the Medina-Cibolo Basin occurred in August 2001, with
the largest decrease in storage (−27 mm) occurring in September 2001.

3.4 Evapotranspiration Rates Using Eddy Covariance

After precipitation, ET is the largest flux in the water balance in semiarid environments. Figure 3-4 shows
the average daily fluxes of the four energy-balance components for the three sites: LE, H, Rn and G.
Following precipitation, LE is initially high but then decreases as water becomes limited, resulting in H
increasing. Net radiation is lowest in the winter when LE is generally lower as energy limitations prevail.
For all sites, a sinusoidal response in H was observed for all seasons, with larger amplitudes observed in
the summer months. The average daily G is less than 3 W/m2, which is a small component of the energy
balance. The seasonality of the LE/(Rn − G) and H/(Rn − G) are different for the Woodland and Savanna
sites. For example, LE dominated the energy balance during the winter, and H dominated the energy
balance during the spring and early summer (Figure SI3). The opposite behavior was observed for the
Savanna and Grassland sites. The completeness of the data after spike removal varied from 67% for the
Grassland site to 84% for the Woodland site.
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Figure 3-4: Average daily energy fluxes from the eddy covariance stations at the [a] Woodland, [b]
Savanna, and [c] Grassland sites, in which Rn is the net radiation, LE is latent heat, H is sensible heat, and
G is soil heat flux. PPT is precipitation.

The 30-minute (averaged) fluxes are accumulated into daily and monthly totals to illustrate the energy
balance closure. Figure SI4 compares the average incoming and outgoing daily and monthly fluxes for the
three sites and indicates energy balance closures of ~90%. These values are comparable to those found in
Wilson et al. (Wilson et al., 2002b) which looked at energy balance closure at many eddy covariance sites
around the world. For the daily values, the Grassland site had the highest R2 but the lowest slope between
the incoming (Rn − G) and outgoing flux (LE + H), indicating a systematic energy-balance issue. The slope
is usually closer to 1 during the summer months. Though the average daily ET is comparable for the entire
period (2.0 ±1.2 mm/day for the Savanna site, 2.0 ±1.0 for the Woodland site), ET is higher at the Savanna
site during June through August and lower during December through February than at the Woodland site
(Table 5 and Figure 3-5). On the other hand, the Grassland and Savanna sites tend to be better correlated
throughout the year (Figure 3-6). The monthly ET rates for the three sites (Figure 3-7) indicate a bimodal
distribution for the Savanna site, which is due to seasonal trends in vegetation. A tighter distribution at
the Woodland site is due to ET being more persistent year-round.
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Figure 3-5: Comparison of the Woodland and Savanna daily Bowen-ratio-corrected evapotranspiration
(ETa) from the eddy covariance sites.

Figure 3-6: Comparison of the Grassland and Savanna daily Bowen-ratio-corrected evapotranspiration (ET)
from the eddy covariance sites.
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Figure 3-7: Intercomparison of Woodland, Savanna, and Grassland monthly Bowen-ratio-corrected
evapotranspiration (ET) from eddy covariance.

3.5 Evapotranspiration Rates from Satellite Imagery Analysis

Figure SI5 shows the NDVI, SAVI, MSAVI, and EVI time series from Landsat for the three EC locations during
the study period. The monthly maximum vegetation indices were used to create the regression versus
monthly ET (Figure 3-8). In each case, ET is estimated (as the dependent variable) as a function of different
vegetation indices, as determined by Landsat images obtained at the EC locations. The best regression
performance occurred with zero lag and a Bowen-ratio-corrected ET (Table 6) (i.e., where energy balanced
closure was forced). The vegetation indices SAVI, MSAVI, and EVI produced similar results (R2 ~ 0.75) using
the Bowen-ratio-corrected ET and zero lag. Conversely, correlation of ET with NDVI was lower (R2 = 0.40),
which may be due to the lack of a soil correction factors used in the other vegetation indices (see Table
7).  Even though the R2 is higher for the Grassland site than the Woodland site, the RMSD for the Woodland
site is lower than the Grassland site by ~5 mm/month. The R2 and RMSD for EVI, SAVI, and MSAVI are
~0.87 and ~10 mm/month, respectively, for the Savanna site. When using all data, we noted a slight
decline in correlation for the Savanna site, but overall the statistics are comparable.
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Figure 3-8: Regressions of Bowen-ratio-corrected monthly evapotranspiration (ET) versus the maximum
monthly vegetation indices including [a] normalized difference vegetation index (NDVI), [b] soil adjusted
vegetation index (SAVI), and [c] modified soil adjusted vegetation index (MSAVI), and [d] enhanced
vegetation index (EVI) from Landsat using zero lag.

The regression error (Figure 3-9) was less than 5 mm/month for EVI-based ET estimates (range is between
0.23 and 0.44), but increased when EVI fell below 0.23 and rose above 0.44; we attribute this primarily to
the lack of data at the lower and upper bounds, which is not surprising given that all ET measurements
were taken in similar meteorological conditions. This EVI range was found to represent 64% of the Cibolo
Basin region during any given month from 2000 to 2018, in which the data range represents more than
80% of the region ~90% of the time. The findings for the Medina-Cibolo Basin were worse, with only 55%
of the region within the EVI range and only ~80% of the monthly data representing 80% of the region. The
difference between the two basins is likely due to higher urbanization in the Medina-Cibolo Basin, leading
to a large number of lower EVI values. The average RMSD over the 1000 runs for the bootstrapped
(training) data was 10.8 mm/month versus a slight increase to 13.9 mm/month for the testing data. The
average R2 for the training data was 0.77 versus 0.72 for the testing data.
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Figure 3-9: Regression error of the Bowen-ratio-corrected evapotranspiration (ET) versus the enhanced
vegetation index (EVI) using zero lag.

Comparisons of ET using NLDAS-2 land surface models, MODIS ET, and EVI-ET (Figure 3-10 and Table 8)
for Cibolo and Medina-Cibolo Basins are similar. For example, ET estimated with VIC is consistently lower
than the EVI-ET with a bias of ~20 mm, but R2 exceeds 0.70. Mosaic was not highly correlated with the
EVI-ET (R2 <0.50). The lower RMSD for the ensemble of NLDAS models (ENS) for Cibolo Basin was similar
for Medina-Cibolo Basin when compared to the other NLDAS models. The highest R2 and the lowest RMSD
were found for MODIS when compared to the ET-EVI. The superior results for MODIS may be due to the
similar methodology used to determine ET and the higher spatial resolution when compared to the other
land surface products.

The average EVI-ET values for both basins are similar, the largest difference being only 7.6 mm/month
(Figure SI6). The average EVI-ET for both basins is ~51 mm/month, with a standard deviation of 14.7 and
13.3 mm/month for Cibolo and Medina-Cibolo Basins, respectively. Results showed a slightly higher
average ET during the summer and a slightly lower ET during the winter in Cibolo Basin than in the Medina-
Cibolo Basin. This may be due to the larger area of savanna vegetation in the Cibolo Basin than in the
Medina-Cibolo Basin (42% versus 23%).
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Figure 3-10: Monthly evapotranspiration (ET) comparison over the Cibolo and Medina-Cibolo Basins from
January 2016 through December 2018, in which Noah, Mosaic, and VIC use NLDAS-2 forcings and ENS in
the ensemble mean of the land surface models, MODIS is from MODIS MOD16A2 8-day composite, and
EVI-ET is from the regression using the enhanced vegetation index.

3.6 Numerical Modeling of the Vadose Zone

HYDRUS was parameterized with available datasets for soil hydraulic properties (POLARIS), total soil depth
(SSURGO), and root distribution (Noah model). Atmospheric boundary conditions for rainfall came from
RainVieux, PET from gridMET, and LAI from MODIS. To preserve transferability throughout the major
drainage areas, we limited model calibration and used the three monitoring sites for validation. Thus, the
model could be scaled to larger areas and used to validate the satellite-derived monthly ET maps. We
present these results first as field validation at these sites, then as watershed validation.

3.6.1 Numerical Simulations at EC Sites

At the site level, HYDRUS was first parameterized using default values and soil properties from the 30-m
POLARIS dataset (Table 9). Although this dataset shows considerable variability over the continental U.S.,
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the values at each EC site are essentially identical at a restrictive layer depth of 60 cm. POLARIS classified
each EC site as loam to a 15-cm depth, silty clay at 15–30 cm, and clay at 30–60 cm. However, field
observations found the bedrock at 40 cm for the Savanna site and 6 cm at the Woodland site, so these
results are not encouraging. Furthermore, the saturated conductivity (Ks) increases with depth, despite
substantial increases in clay content. The POLARIS algorithm begins with the soil map unit, which is a
polygon, and adds heterogeneity based on terrain characteristics (e.g., slope, aspect, drainage
accumulation). Given the tread-riser geomorphology of the Edwards Aquifer (Woodruff and Wilding,
2008), the POLARIS algorithm likely could not define enough topographic variation to change the within-
map unit properties at each EC site. The only variations between sites are the atmospheric forcings
(precipitation and PET), root distribution, and LAI.

Despite similar soil properties, the numerical simulations represented soil water content and daily ET
fluxes reasonably well (Table 10). The default HYDRUS parameterization level (P1) using a monthly leaf
area index (LAI) for each vegetation class over the study period (2016–2018) resulted in an average RMSD
for observed soil water content of 0.080 m3/m3, a ubRMSD of 0.056 m3/m3, an R2 of 0.60, and an NSE of
0.46. Simulated daily ET fluxes averaged for all sites had an RMSD of 0.123 mm, an R2 of 0.34, and an NSE
of 0.28 (Table 10). For a model to perform better than the mean value, the NSE must be >0. This condition
occurred at all sites, although few performed above the acceptable limits used in watershed modeling
(NSE >0.5) (Moriasi et al., 2007; Ritter and Muñoz-Carpena, 2013), even though soil moisture was kept
within a fixed range and with lower variation than watershed discharge. Thus, we are using a combination
of metrics to evaluate these models.

The next parameterization level (P2) used weekly updated MODIS-based LAI that lowered the soil water
content RMSD and ubRMSD to 0.069 and 0.048 m3/m3, respectively, and the daily ET-flux RMSD to 0.110
mm while improving correlations. Next, we manually adjusted the vegetation water uptake from −800 to
−1200 cm to minimize the ET flux RMSD (P3) and added a more realistic karst bottom boundary with a
seepage face of −10 cm (P4); however, none of these changes greatly altered model performance, though
they did improve the conceptual model. This final parameterization (P4) produced acceptable results for
soil water content when evaluated using an RMSD and ubRMSD of 0.072 and 0.052 m3/m3 respectively,
an R2 of 0.64, and an NSE of 0.52 (Table 10).

At the individual site level, the P4 model performed satisfactorily for soil water content at all three sites,
whereas daily ET fluxes were only satisfactory at the Woodland site (Table 11). These results are shown
for the Woodland (Figure 3-11), Savanna (Figure 3-12), and Grassland (Figure 3-13) sites over the 3-year
study period. At the Woodland site, with only 6 cm of actual soil, results showed surprisingly good model
performance for soil water content at a 5-cm depth, with a daily ET-flux RMSD of 0.9 mm/d (Figure 3-11d)
and a ubRMSD of 0.038 m3/m3 (Figure 3-11b). Observations of soil water content at the Savanna site
indicated more water storage during winter, sustaining soil moisture into summer. The model could not
reproduce this trend, leading to a greater magnitude of ET fluxes even during the winter, when plants
used all available soil water faster than observations (Figure 3-12f). Like the Savanna site, Grassland site
soil water content data also suggest some prolonged storage over winter, though the model simulated a
more dynamic range (Figure 3-13) and a daily ET-flux RMSD of 1.2 mm/d. In all cases, the model seems to
sufficiently reproduce soil water content (unbiased RMSD of 0.05 m3/m3) and ET flux (RMSD of 0.12
mm/d). The cumulative ET fluxes compared well, despite no site-specific calibration.
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Figure 3-11: Model results from HYDRUS for the Woodland site including soil water content at [b] 5 cm, [c]
10 cm (no sensor), [d] 20 cm (no sensor), [e] 50 cm (no sensor), and [f] daily ET flux and [g] cumulated ET.
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Figure 3-12: Model results from HYDRUS for the Savanna site including soil water content at [b] 5 cm, [c]
10 cm, [d] 20 cm, [e] 50 cm (no sensor), and [f] daily ET flux and [g] cumulated ET.
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Figure 3-13: Model results from HYDRUS for the Grassland site including soil water content at [b] 5 cm, [c]
10 cm, [d] 20 cm, [e] 50 cm, and [f] daily ET flux and [g] cumulated ET.

3.6.2 Upscaled Numerical Simulations of ET Flux Versus ET-EVI

As indicated above, EVI-ET is the relationship between measured ET from the EC towers, essentially at
point scale, and EVI determined from Landsat imagery for the same footprint. This relationship was
determined across the relatively short time period when the towers were operational, and is shown in
Figure 11d, where ET is the dependent variable and EVI is the independent variable. The HYDRUS model
also represents conditions at the EC tower sites. Thus, Table 12 compares the monthly and annual ET
fluxes from 2004 to 2018 between the two methods, P1/P4 HYDRUS simulations and remotely sensed EVI-
ET at the three EC sites. Results showed that HYDRUS simulated ET responded more dynamically to rainfall
events than did EVI-ET (Figure 3-14). For example, during wet periods like fall 2007, the simulated ET
peaked at nearly 150 mm/month at all three sites, whereas EVI-ET never surpassed 100 mm/month.
Conversely, the 2011 drought stressed vegetation throughout Texas, and ET clearly decreased at both the
Savanna (Figure 3-14b) and Grassland (Figure 3-14c) sites. The EVI-ET at the Woodland site, however,
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ranged consistently 50–80 mm/month regardless of drought conditions, which suggests that vegetation
response to drought at the Woodland site is less sensitive than at the other sites, also leading to a lower
correlation (R2=0.31) between Woodland site simulations and ET-EVI. Annually, the RMSD between EVI-
ET and the model ranged from 83.2 mm/year at the Grassland site and 153 mm/year at the Woodland
site (Figure 3-15). Annual correlation was also very high for both the Savanna and Grassland sites, but not
the Woodland site (Table 12), which is unusual considering the best HYDRUS model performance was
observed at the Woodland site.

Figure 3-14: Monthly ET and transpiration (Tsim) flux comparison between HYDRUS and remotely sensed
ET using EVI (ET-EVI) at [a] Woodland, [b] Savanna, and [c] Grassland field sites.
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Figure 3-15: Annual ET and Transpiration (Tsim) flux comparison between HYDRUS and remotely sensed ET
using EVI (ET-EVI) at [a] Woodland, [b] Savanna, and [c] Grassland field sites.

Finally, the P4 parameterization was applied across the entire Cibolo major drainage basin, with each
HYDRUS model representing a cell at 500 m resolution (i.e., resulting in 4093 total simulations). The
monthly (Figure 3-16) and annual (Figure 3-17) ET fluxes were then totaled and compared to the EVI-ET
fluxes determined at the same resolution. Results of these comparisons indicate a mean R2 of 0.36 (Figure
3-16b), a mean RMSE of 14 mm/month (Figure 3-16d), and an MBE of −2.5 mm/month (Figure 3-16f). The
RMSE was lower in the central area of the watershed (where it was calibrated) and increased to the west
with increasing aridity. Annually, the mean R2 was 0.43 (Figure 3-17b) with a mean RMSE of 70 mm/year
(Figure 3-17d) and an MBE of −27 mm/year (Figure 3-17f) over Cibolo Basin.

To conclude, both the HYDRUS model and remotely sensed EVI-ET have benefits, drawbacks and
uncertainties. For example, we found that the soil hydraulics in the model were poorly represented by
POLARIS. In the future, other products such as SoilGrids250m (Hengl et al., 2017), which produces 250 m
soil depth, texture, and bulk density maps, could be transformed into more representative hydraulic
properties (Schaap et al., 2001; Zhang and Schaap, 2017). Regardless, the correspondence between the
model and EVI-ET suggests either or both could be used to constrain future estimates of Rdf.
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Figure 3-16: Monthly [a and b] correlation (R2), [c and d] root-mean squared difference (RMSD), and [e and
f] mean bias error (MBE) between HYDRUS-ET and EVI-ET from 2004 to 2018 for Cibolo Basin.
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Figure 3-17: Annual [a and b] correlation (R2), [c and d] root-mean squared difference (RMSD), and [e and
f] mean bias error (MBE) between HYDRUS-ET and EVI-ET from 2004 to 2018 for Cibolo Basin.

3.6.3 Diffuse Recharge Dynamics from Numerical Simulations

Revisiting the three EC sites, HYDRUS simulations matched both the observed soil water content and EC-
ET fluxes over the study period, and highlight highlights temporal dynamics of Rdf over the past 10 years
(Figure 3-18). For example, the impact of the 2011 drought is evident through 2015: Rdf is unchanged with
time until soil water storage increases to approximately 200 mm during most of 2015, before fall
precipitation events lead to nearly 100 m of diffuse recharge in just a few days. Similar precipitation events
occurring in fall 2018 also produced nearly 200 mm of Rdf. Thus, there appears to be a critical threshold in
soil water storage that needs to be met before significant Rdf is possible. Thus, Rdf cannot be estimated as
a constant percentage of precipitation depth, both of which are expressed in units of length. As an
illustration, the volume of Rdf from Cibolo Basin ranges from 87,000 acre-ft (8% of precipitation) in 2004
to essentially 0 acre-ft in 2008, when nearly 300,00 acre-ft of precipitation was estimated (Figure 3-19c).
The estimate of diffuse recharge from HYDRUS between 2004 and 2018 is approximately 32% of the total
(discrete and diffuse) recharge estimated from the USGS method (Puente, 1978) for the Cibolo Basin
(Figure 3-19b). Accuracy of the diffuse recharge estimate from HYDRUS can be refined by measuring
baseflow in Cibolo Creek, which is assumed to be equal to diffuse recharge in the contributing zone, but
the result showing that about 32% of total recharge is through diffuse processes does appear reasonable.
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Figure 3-18: HYDRUS simulations of cumulative fluxes of runoff and diffuse recharge (Recharge), and
precipitation rate and soil water storage at the [a] Woodland, [b] Savanna, and [c] Grassland eddy
covariance sites.
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Figure 3-19: Cibolo Basin [a] annual total recharge from the USGS and Rdf from HYDRUS, [b] annual
percentage of Rdf of total USGS recharge, and [c] precipitation volume from RainVieux.

3.6.4 Comparison of Field Measured ET (EC-ET), EVI-ET and HYDRUS-ET

We compared measured ET from the eddy covariance method as a validation point for both the EVI route
and numerical modeling route. In both comparisons—EC-ET versus EVI-ET, and EC-ET versus HYDRUS-ET—
we regressed (predicted) EVI-ET and HYDRUS-ET onto the (observed) EC-ET, and determined correlation,
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standard error, and the p-level indicating significance.  All tests were conducted at a significance level of
0.05.

We have conducted statistical analyses of the data (SigmaStat, v13) starting with (1) analysis of monthly
observed ET fluxes versus those estimated using EVI, then (2) we compared monthly EC-ET and ET-EVI, (3)
compared monthly EC-ET and HYDRUS-ET (for each of three sites), and finally (4) we compared daily EC-
ET and HYDRUS-ET for the Savanna site, to understand whether high resolutions measurements and
estimates are comparable. All results are found in the Appendix, Section 7.

(1) Monthly EC-ET fluxes as a function of EVI measurements – Results show that the relationship is
significant to P<0.001 (R2 = 0.758, StdErr = 11.92 mm/month)

(2) Monthly EC-ET fluxes versus ET-EVI – Results show the relationship is significant to P<0.001 (R2 =
0.739, StdErr = 10.64 mm/month). In this case, the regression equation (slope = 0.739) indicates
that the EVI-estimated ET is underestimated by approx. 26%

(3) Monthly EC-ET fluxes versus monthly HYDRUS-ET – Results of linear regression showed the
following: Woodland (R2=0.805, StdErr=13.4 mm/month; P<0.001); Savanna (R2 = 0.276; StdErr =
24.4 mm/month; P = 0.005); Grassland (R2 = 0.631; StdErr = 14.4 mm/month; P = 0.019). In the
case of Woodland growth forms, HYDRUS-ET overestimated EC-ET by 46%; in the cases of
Savanna and Grasslands, HYDRUS-ET underestimated EC-ET by 42% and 36%, respectively.
Figure 3-20 shows the results of these regression calculations.

(4) Daily EC-ET fluxes versus Daily HYDRUS-ET (Savanna site) – relationship is significant to P<0.001
(R2 = 0.307). We also noted that the regression equation (slope = 0.605) indicates that the
HYDRUS-ET is underestimating EC-ET by around 40%, pointing to additional sources of available
water below the modeling domain.

In general, the workflow, from measuring ET using ground-based measurement techniques, and then
upscaling those techniques using a vegetative index (e.g., EVI in this case) or comparing the results to a
numerical model shows significant promise. Model results for each of the three growth forms, measured
during the field project, were well simulated and indicated significance when compared to field
measurements. Clearly, the underestimation with HYDRUS is a concern but extending the model domain
downward, into the epikarst or karst material could improve the results further.
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Figure 3-20: Results of linear regression between monthly (cumulative) observed EC-ET and predicted
HYDRUS-ET results.

3.7 Recharge Modeling

3.7.1 Soil Moisture

Figure SI7 shows the results of the water flux using the soil moisture method compared to the results from
the EC method. The water flux using the soil moisture method at the Woodland site was more similar to
the results from the EC method than the Savanna site with an R2 of 0.66 and an RMSD of 55.61 mm/month
(Table 13). The bias was also lower at the Woodland site (7.28 mm/month) than the Savanna site (13.54
mm/month). The comparison using the meteorological station data indicates a more negative bias at
Salado, Headquarters Cave, and High Hill when using soil moisture to estimate water flux (Table 14).

3.7.2 Water Balance

From 2016 to 2018, high outflows were recorded at Cibolo Creek in spring 2016 and September 2018
(Figure SI8). Discharge was also recorded at Salado Creek in spring 2016 and September 2018, but flows
were higher in winter 2017. From 2000 to 2018, discharge at Cibolo Creek in Selma, TX was above 202,000
acre-ft for 6 out of 19 years, with the highest discharge volume recorded at 154,000 acre-ft in 2003 (mostly
occurring during July). The second highest discharge took place in 2007, but over a period extending from
March through August.

Precipitation dominates the monthly water-balance components (Figure 3-21 and Figure 3-22). For 60%
of the time, precipitation is more than 40,500 acre-ft for the Cibolo Basin and 24,300 acre-ft for the
Medina-Cibolo Basin. For Cibolo Basin, ET is consistent over time and ranges from an average of <32,400



35

acre-ft per month during December through February to >52,700 acre-ft during May through July. For the
Medina-Cibolo Basin, ET is slightly lower, with an average monthly ET of <24,300 acre-ft during December
through February to >38,500 acre-ft per month during May through July. Yearly ET/PPT was estimated to
range between 0.45 for a very wet year and 1.35 for a dry year. Values greater than 1.0 indicate that
groundwater or surface water could be contributing water to ET. A caveat of this method is that, during
the study period (2016–2018), the ETo 0.9 for the region and did not include years when the yearly ET
exceeded precipitation. Also, runoff could have contributed to flow in Cibolo Creek, in addition to base
flow. For example, discharge at the 0818500 gage (Cibolo Creek at Selma) was at least 20% of precipitation
for a total 4 months during the study period, which means that either runoff occurred, or that
precipitation events led to pulses of diffuse recharge, as seen in the HYDRUS simulations and described in
Section 3.6.3. Though changes in soil water storage (dS) never exceed ET in a given month, there are times
when dS/ET exceeds 40%. The highest average recharge volumes (>24,300 acre-ft) were estimated to
occur during May, September, and October, with the lowest recharge (<0 acre-ft) occurring during August.

Figure 3-21: Monthly components of the water balance for the Cibolo Basin, which include [a] precipitation
from gridMET (PPT), [b] evapotranspiration (ET) from the EVI, [c] soil water storage (SWS) from NLDAS-2
Noah, [d] runoff from USGS gage 08185000 (Cibolo Creek at Selma, TX), and [e] recharge.
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Figure 3-22: Monthly components of the water balance for the Medina-Cibolo Basin, which include [a]
precipitation from gridMET (PPT), [b] evapotranspiration (ET) from the EVI, [c] soil water storage (SWS)
from NLDAS-2 Noah, [d] runoff from USGS gage 08178700 (Salado Creek at Loop 410, San Antonio, TX),
and [e] recharge.

4. Discussion and Conclusions

4.1 Precipitation

Recharge is limited by the amount of precipitation in the area, which dominates the monthly water
balance components. It is crucial that precipitation estimates are accurate. Products corrected using rain
gage data have an advantage when rain-gage networks are dense, especially when rainfall is scattered or
locally heavy as is common for Texas. Partnerships with schools to host precipitation gages would help
bolster the number of stations in an area while also engaging the next generation of decision-makers.

4.2 Potential Evapotranspiration

Results show that, of the weather station variables used to calculate PET, wind speed and maximum
relative humidity correlate the lowest to the gridMET products, whereas temperature and minimum
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relative humidity are very highly correlated. We found that gridMET PET was more comparable to the
meteorological stations than NLDAS, which estimated an average of 3 times more PET on a monthly basis.

4.3 Soil Moisture

Soil water storage is a source of uncertainty in the water budget but can be extremely relevant. Monthly
storage increases or decreases were found to be more than 40% of ET during some months. Of the NLDAS
products used (Noah, Mosaic, and VIC), the change in soil water storage can range from ±50 mm/month
to ±16 mm/month, assuming the soil depth is 40 cm. We recognize that the soil depth in our analyses is a
limiting factor, if the roots extend below the soil layer and into the epikarst, utilizing additional source of
water. Land surface models are still unable to handle the types of heterogeneity observed in epikarst.
When comparing these products to conditions at soil water monitoring stations, even though the
correlation is acceptable and the bias is low, the RMSD for monthly soil water storage can be more than
20 mm/month. Properly characterizing the soil profile at weather stations and installing soil moisture
sensors in shallow and deep soils would provide insight into this component of the water balance.

4.4 Evapotranspiration

Evapotranspiration accounts for the most water loss from the hydrologic system, and thus accurate
measurements are extremely important. We found an EVI with zero lag was the most suitable option
tested to relate satellite measurements to monthly measured ET. The regression equation to extend the
EC station measurements of ET to the regional scale was more accurate between EVIs of 0.23 and 0.44.
Siting future EC stations in regions that can extend this range could improve area-wide ET estimates. We
found that overall, ET rates were very similar across the three different landcovers studied, with the
Savanna site transpiring more during the summer months and less in the winter compared to the
Woodland site. To extend this methodology to other basins, installing EC stations across a broader
climatological zone would be ideal. Measurements taken during extreme events (either droughts or very
wet conditions) are also beneficial. Continuous monitoring would help capture these extreme periods.
Another improvement to the ET estimates could be to consider increasing the time resolution of satellite
remote-sensing imagery. For example, Planet Labs is a private vendor that provides commercial multi-
band imagery at very high spatial (less than 4 m) and temporal (~ daily) resolution.

4.5 Recharge

The most recent Groundwater Availability Model (GAM) of the area (Jones et al., 2011) provides a list of
10 previous recharge studies (their Table 5-1). These studies lump direct and diffuse recharge into a single
number, so we cannot directly compare them with our diffuse recharge (Rdf) values; yet; relative
comparisons are useful. For example, the range of total recharge as a percent of PPT, across all studies is
between 1.5% - 11%. Our estimates of 11.2% and 13.5% (ET-EVI) for the Cibolo and Medina-Cibolo Basins
are higher, but closer to the more recent study by Ockerman (2007). We note that the methods, field
areas and measurement periods all differ, so direct comparisons are difficult to make. Negative monthly
recharge values using the water balance method may indicate that plants are extracting water from the
epikarst layers below the soil, but the changes in recharge from month to month or year to year are likely
influenced by weather events or conditions that may have occurred months or years earlier. As we
indicate above, the amount of yearly diffuse recharge ranged from 87,000 acre-ft in 2004, which
accounted for 8% of the total precipitation, to essentially 0 acre-ft in 2008. Memory from the previous
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month or year likely explains this large range, but our measured dataset was too short, forcing us to rely
on estimates of precipitation products. Future studies on the impact of how month-over-month or year-
over-year conditions might impact recharge would be valuable.

The HYDRUS model, as any other model, does have some limitations. First, the model only simulates
vertical (1-D) flow and therefore active groundwater flow or lateral flow between 1-D domains are not
considered. Second, the datasets used to create the model array were originally collected at different
resolutions, which could perpetuate error when up- and down-scaling. For example, the 30 m soil data,
which was scaled up to 500 m resolution using the nearest neighbor method would lose information
during this transfer. Likewise, the 4 km rainfall and potential evapotranspiration data were scaled down
to 500 m resolution, also using the nearest neighbor method. These original data products already include
some averaging of spatial information, and using the nearest neighbor approach does not bring back the
spatial information. In an ideal scenario, an accurate high-resolution data set would be used for all input,
but this creates additional computational complexity.

Partitioning the diffuse recharge into specific aquifers would require a significantly more sophisticated
below-ground study than what was done here. The emphasis in this study, and as described above, was
on the amount of water percolating below root zone. Figure 4-1 shows the percentages of total diffuse
recharge projected to occur above the Contributing (Figure 4-1a) and Recharge Zones (Figure 4-1b). This
was done by summing the HYDRUS-modeled recharge for each 500 m cell, identifying the zone
represented by the cell and expressing that sum as a percent of total Rdf for each basin. The remaining
amount of Rdf occurring in the Artesian Zone is 9.3% and 29.3% of the total Rdf. The results show temporal
differences between basins and with time, and illustrate that the percentages of area overlying the three
zones do not translate directly into the percent of diffuse recharge, just given different precipitation and
vegetation across the EAA region. Additional research would be needed to understand to where the
diffuse recharge flows after percolating below the root zone.
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Figure 4-1: Percentage of Total Rdf occurring above the Contributing Zone (a) and the Recharge Zone (b),
using estimates of diffuse recharge determined using HYDRUS.
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5. Recommendations

5.1 Maintain/expand onsite weather and soil monitoring across EAA Region

The field measurements conducted for EAA focused on processes only at Camp Bullis, though the results
were upscaled more regionally using satellite remote sensing and other meteorological products that
populated the entire Cibolo Basin (also known as Basin #7). The research highlighted several insights that
could be applied to other basins in the EAA Region:

 The ET estimates between the three Eddy Covariance towers installed and operated at Camp
Bullis were comparable (~2.1 mm/day when averaged across the entire monitoring period),
leading to the general conclusions that diffuse recharge was also similar. One likely explanation is
that the weather conditions (e.g., incoming solar radiation, temperature and precipitation) across
Camp Bullis were similar. To better understand how recharge changes across the entire EAA
region, especially in the drier, western regions, and to better parameterize other basins (e.g.,
Nueces-West Nueces River Basin), we recommend redeploying existing EC stations in different
geographic areas of EAA’s Region and maintaining the stations for at least a full year, preferably
longer, to observe interannual variability.

 The five weather stations installed by EAA at Camp Bullis, as well as other precipitation gages
operated within the EAA Region, are used as correction points for RainVieux, improving
precipitation estimates. Densifying the monitoring network by installing additional stations would
further reduce uncertainty in precipitation estimates. New station locations could be chosen
either through a grid pattern or other statistical techniques, like mean relative differencing
(Vachaud et al., 1985).

5.2 Automate blending of in-situ data and satellite remote sensing (or land surface models)

Research findings show that diffuse recharge can be a significant percentage of the groundwater recharge
component of the water balance, but that variability in time and space complicates projections. It is
unclear how well the intensive data collection at one area, Camp Bullis, can be extrapolated to other areas,
because of different land use, soil properties, etc. Thus, we recommend developing and implementing an
approach that will produce a soil moisture map of high spatial and temporal resolution. To accomplish
this recommendation, the approach would blend both satellite remote sensing or land surface models,
and in-situ data, to produce high-resolution soil moisture maps across large EAA areas. The approach
would use results from the Camp Bullis project, plus research conducted elsewhere in Texas, in which
techniques are being developed to project soil moisture status up to 72 hours into the future. The ability
to automate this would allow for better irrigation scheduling, improved management of dam operations
and water releases, and more effective flood risk mitigation activities that would protect lives and
property. The process automates the delivery of soil moisture data from the National Land Data
Assimilation System (NLDAS), and uses the relationships between vegetation indices and ET developed in
this work, but expanded across the EAA service area. With the combined monitoring program and
machine learning approaches (described below), we can produce better soil moisture maps that would be
available elsewhere, and make them usable to EAA scientists.
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5.3 Apply multivariate regression or machine learning algorithms

Future effort should consider developing a data analytics workflow that blends high-resolution satellite
remote sensing data, outputs of land surface models, and in-situ data, to enable generation of high-
resolution soil moisture maps across large EAA areas. Results from the Camp Bullis project showed that
knowledge of soil water storage is critically important to diffuse recharge, but significant uncertainties are
present in the current storage estimates, due to uncertainties in soil hydraulic properties, soil
horizon/types and depths, and soil water content observations. Furthermore, we recognize that our
inability to measure water distribution in, and physical properties of, the epikarst introduces uncertainties
as well. Results from the Camp Bullis project also suggest that many existing data products (e.g.,
precipitation) may manifest different degrees of uncertainty. In addition, process-based approaches alone
(e.g., HYDRUS) may encounter equifinality issues, in which different parameter values yield the same
output, because of the parameter uncertainty and model conceptualization errors. Recent data analytics
approaches, especially newer methods using machine learning, enable us to exploit linkages in
multisource data to develop more-constrained regression models. For example, SoilGrids250, a new
dataset generated through use of data and information from 150,000 observed soil profiles worldwide
and Quantitative Random Forest and Gradient Boosting methods (Hengl et al., 2017) reports significant
improvement over other methods. When combined with physical insights and process-based models, the
regression models, like the EVI-ET relationship developed here, become more robust. We recommend
adapting the gridded soil moisture data from the National Land Data Assimilation System (NLDAS) for the
EAA service area, and automating the delivery of that gridded product to EAA scientists involved with
estimating diffuse recharge to aquifer systems. NLDAS includes a quality-controlled soil moisture dataset
compiled by NASA from modeling and re-analyses. It is often used to support various modeling activities,
but also can provide useful information on soil moisture status so that local stakeholders (from
hydrologists to irrigators) can estimate hydrologic response and/or make decisions on land use, such as
irrigation scheduling. The NLDAS land surface models used to create the soil moisture maps are provided
on grids of ~8.5 mile (14 km, 0.125 deg) resolution. Thus, the NLDAS gridded soil moisture maps need to
be downscaled and bias-corrected before they can be used for diffuse recharge estimates.

5.4 Assessing land use change on diffuse recharge

Results of this study indicate that approximately 10-12% of total precipitation is recharged through diffuse
and discrete routes, and that approximately 30% of total recharge is through diffuse routes (~4%
precipitation). The percentages here are averaged across both time and space. The heterogeneous nature
of the geology and weather patterns across the EAA Boundary, and the memory that the near-surface soil
and geological systems carries through year-over-year add significant uncertainty to any estimate. One
change that is almost certain to occur is that population will continue to grow across the Contributing and
Recharge Zones of the Edwards Aquifer. What is less certain is whether and to what extent the associated
land-use change will alter the diffuse recharge because of impervious surfaces or discrete recharge
because of surface water routing toward or away from river reaches that are known to recharge aquifers.
We thus recommend extending the approach used in this study, in which we overlay population
projections, estimates of roads, physical structures, etc., and other diversion features onto the diffuse
recharge tomograms obtained from numerical models (e.g., HYDRUS). The two outcomes, combined,
would show where development might interrupt diffuse recharge or enhance or mitigate discrete
recharge. The results could then be used for long-term future projections of recharge, given different
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climate scenarios (baseline, wet periods, dry periods, etc.). Depending on the needs for EAA, the
projections could be updated every 5 years and synced with the TWDB state water plans, so that water
demand and potential water supply are co-projected.

5.5 Integrating dynamic recharge maps into groundwater models

Results of this study reveal significant spatial and temporal variability of diffuse recharge in EAA regions,
resulting from variabilities in precipitation, ET, land surface, soil properties, and epikarst properties. It is
recommended that a coupled surface water/groundwater modeling approach be taken in future studies
to integrate recharge estimates with groundwater availability modeling for EAA regions. Coupled surface
water/groundwater modeling has been increasingly used at the global and regional scales to assess
groundwater sustainability under current and future climates (Wada and Bierkens, 2014). The rich set of
historical and real-time monitoring data collected by EAA can be combined with high-resolution
hydrometeorological gridded maps mentioned in the above sections to enable these types of studies.

6. Data Availability

The final dataset was posted to the Texas Data Repository Dataverse (Bongiovanni, 2020). This includes
the raw 30-minute flux data and metadata for the Woodland, Savanna, and Grassland sites, using the
Biological, Ancillary, Disturbance and Metadata (BADM) protocol, which is standardized across AmeriFlux,
Fluxnet and other networks (Law et al., 2008). The BADM site metadata includes general site information,
sensor type, and sensor calibration information. The 30-minute data includes heat flux, gas, footprint, and
meteorological data.
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7. Tables

Table 1: Root mean squared difference (RMSD) and correlation (R2) for monthly rainfall between the
gridded precipitation products and the weather stations.

RMSD (mm/month) R2

Site Name PRISM NLDAS RainVieux gridMET PRISM NLDAS RainVieux gridMET
Salado 28.6 79.0 11.6 19.9 0.97 0.40 0.99 0.98
Well 10 17.4 84.3 23.0 18.5 0.99 0.39 0.97 0.98
High Hill 27.9 72.5 18.7 19.6 0.97 0.48 0.97 0.97
Acan 18.7 103 25.7 11.2 0.98 0.46 0.98 0.99
Headquarters Cave 15.1 105 17.3 13.4 0.98 0.40 0.99 0.99
Woodland 20.4 85.5 22.4 17.5 0.97 0.42 0.97 0.97
Savanna 29.1 68.7 24.1 23.8 0.93 0.50 0.96 0.95
Grassland 26.6 73.7 13.6 31.3 0.96 0.60 0.98 0.97
Mean 23.0 84.0 19.6 19.4 0.97 0.46 0.98 0.98
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Table 2: Correlation coefficient (R2) and the slope of regression equation for the daily meteorological
variables between the PET stations and the gridded datasets of air temperature (Temp), incoming solar
radiation (Solar), wind speed, and relative humidity (RH).

Product Stat Station
Temp

max (C)
Temp

min (C)
Temp

mean (C)
Solar

(W/m2)
Windspeed

(m/s)
RH

max (%)
RH

min (%)
RH

mean (%)

gridMET

R2

Salado 0.93 0.88 0.93 0.69 0.57 0.25 0.75 0.65
Well10 0.93 0.88 0.93 0.70 0.72 0.27 0.76 0.65
Highhill 0.93 0.90 0.94 0.68 0.71 0.34 0.76 0.67
Acan 0.94 0.88 0.94 0.64 0.48 0.24 0.74 0.62
Hqcave 0.94 0.90 0.94 0.72 0.23 0.33 0.74 0.67

slope

Salado 0.94 1.02 0.98 0.98 0.48 0.20 1.00 0.66
Well10 0.94 1.00 0.97 1.00 0.94 0.22 1.04 0.69
Highhill 0.96 0.89 0.93 1.00 0.72 0.47 1.02 0.82
Acan 1.00 1.02 1.00 0.93 0.33 0.22 1.02 0.68
Hqcave 1.00 0.87 0.95 1.00 0.27 0.60 1.04 0.94

NLDAS

R2

Salado 0.91 0.85 0.94 0.70 0.57 0.15 0.70 0.69
Well10 0.91 0.86 0.95 0.70 0.70 0.20 0.71 0.70
Highhill 0.91 0.92 0.95 0.68 0.71 0.58 0.70 0.74
Acan 0.91 0.84 0.94 0.64 0.48 0.12 0.73 0.69
Hqcave 0.92 0.93 0.96 0.72 0.25 0.66 0.73 0.76

slope

Salado 0.90 1.13 1.01 0.98 0.48 0.16 1.00 0.70
Well10 0.90 1.11 1.00 0.99 0.96 0.20 1.04 0.74
Highhill 0.92 1.00 0.96 1.00 0.72 0.62 1.01 0.89
Acan 0.96 1.10 1.02 0.94 0.31 0.15 1.01 0.70
Hqcave 0.96 0.98 0.97 1.01 0.26 0.82 1.04 0.98
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Table 3: Root mean squared difference (RMSD), correlation coefficient (R2), mean bias error (MBE) for
monthly and daily potential evapotranspiration (PET) between the gridded products and the EAA PET
stations.

gridMET PET (mm/month) NLDAS (mm/month)
Station RMSD R2 MBE RMSD R2 MBE

Salado 37.79 0.92 −32.97 112.10 0.89 −102.29

Well10 31.69 0.96 −28.46 105.08 0.92 −95.97

Highhill 29.36 0.95 −24.57 101.80 0.91 −91.63

Acan 41.05 0.93 −35.16 109.73 0.90 −97.73

Hqcave 46.84 0.93 −41.48 117.94 0.91 −105.93

gridMET PET (mm/day) NLDAS (mm/day)
Station RMSD R2 MBE RMSD R2 MBE

Salado 1.53 0.73 −1.09 3.87 0.66 −3.36

Well10 1.35 0.78 −0.91 3.57 0.69 −3.10

Highhill 1.35 0.74 −0.82 3.58 0.67 −3.07

Acan 1.66 0.69 −1.15 3.85 0.62 −3.26

Hqcave 1.85 0.70 −1.41 4.14 0.65 −3.57
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Table 4: Root mean squared difference (RMSD), correlation coefficient (R2), and mean bias error (MBE) for
monthly soil water storage between the gridded soil moisture products and the PET and Eddy covariance
sites.

0–10 cm monthly storage (mm/month)
Salado Well10 Highhill Acan Hqcave Woodland Savanna Grassland Average

RMSD
Noah 4.75 4.50 3.08 8.02 4.35 5.16 4.24 2.74 4.60
Mosaic 4.99 5.65 4.34 8.45 4.53 4.59 4.55 3.94 5.13
VIC 4.61 3.98 3.71 7.55 6.51 9.13 7.39 4.57 5.93

MBE
Noah −0.33 −0.19 −0.10 −0.37 −0.47 0.25 −0.32 −0.26 −0.22
Mosaic −0.44 −0.18 0.04 −0.36 −0.67 0.03 −0.41 −0.32 −0.29
VIC −0.18 −0.16 −0.38 −0.34 −0.62 0.56 −0.15 0.24 −0.13

R2

Noah 0.75 0.78 0.90 0.45 0.81 0.91 0.87 0.92 0.80
Mosaic 0.88 0.77 0.90 0.48 0.83 0.91 0.86 0.91 0.82
VIC 0.17 0.50 0.63 0.36 0.48 0.64 0.52 0.66 0.50

0–40 cm monthly storage (mm/month)

Salado Well10 Highhill Acan Hqcave Woodland Savanna Grassland Average

RMSD
Noah 6.30 12.10 12.14 29.46 24.32 NaN 14.12 9.80 15.46
Mosaic 11.28 14.92 10.20 29.08 17.99 NaN 8.57 9.56 14.51
VIC 12.43 12.98 12.36 30.59 24.95 NaN 16.66 11.59 17.36

MBE
Noah −0.24 −0.44 −0.65 −1.18 −3.19 NaN −0.42 −0.66 −0.97
Mosaic −1.12 −0.47 −0.02 −1.20 −2.82 NaN −0.48 −2.33 −1.21
VIC −0.54 −0.44 −1.25 −1.18 −2.65 NaN 0.01 −0.51 −0.94

R2

Noah 0.92 0.77 0.82 0.43 0.66 NaN 0.94 0.86 0.77
Mosaic 0.90 0.77 0.89 0.50 0.80 NaN 0.94 0.91 0.82
VIC 0.47 0.74 0.87 0.33 0.64 NaN 0.86 0.85 0.68

Table 5: Daily evapotranspiration (ET) comparison using the correlation (R2), mean, and standard deviation
(Stdev) between the Woodland and Savanna site.

Mean ET
(mm/day)

Stdev ET
(mm/day)

Mean ET
(mm/day)

Stdev ET
(mm/day)

R2 Woodland Savanna
Mar–May 0.29 2.03 0.85 2.25 1.14
June–Aug 0.36 2.36 1.17 2.79 0.98
Sept–Nov 0.72 2.10 0.93 1.87 0.89
Dec–Feb 0.77 1.48 0.72 0.68 0.31
Total 0.44 2.04 1.01 2.00 1.18
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Table 6: Correlation (R2) of the vegetation indices (normalized difference vegetation index [NDVI], soil
adjusted vegetation index [SAVI], modified soil adjusted vegetation index [MSAVI], and enhanced
vegetation index [EVI]) versus the Bowen-corrected and uncorrected evapotranspiration using lags of −1
month, no lag, and 1 month.

Uncorrected Bowen ratio Bowen correction

Lag −1 0 1 −1 0 1

NDVI 0.17 0.35 0.30 0.18 0.40 0.32

SAVI 0.30 0.71 0.47 0.32 0.74 1.46
MSAVI 0.31 0.73 0.49 0.32 0.75 0.47
EVI 0.29 0.72 0.46 0.32 0.76 0.44

Table 7: Correlation (R2) and root mean squared difference (RMSD) of the vegetation indices (normalized
difference vegetation index [NDVI], soil adjusted vegetation index [SAVI], modified soil adjusted vegetation
index [MSAVI], and enhanced vegetation index [EVI]) versus the Bowen-corrected evapotranspiration using
the equation found using all the data for the individual sites.

R2 RMSD [mm/month]
Woodland Savanna Grassland All Woodland Savanna Grassland All

NDVI 0.14 0.76 0.50 0.40 18.67 16.41 23.20 18.38
SAVI 0.58 0.87 0.68 0.74 11.82 10.20 17.97 12.17
MSAVI 0.59 0.88 0.69 0.75 11.62 10.10 17.39 11.94
EVI 0.63 0.87 0.71 0.76 11.23 10.12 16.93 11.71

Table 8: Root mean squared difference (RMSD), correlation (R2) and mean bias error (MBE) of monthly
evapotranspiration comparison over the Cibolo and Medina-Cibolo Basins from January 2016 through
December 2018, in which Noah, Mosaic and VIC use NLDAS-2 forcings, ENS in the ensemble mean of the
land surface models, and MOD16 from MODIS MOD16A2 8-day composites.

Cibolo Medina-Cibolo
Noah Mosaic VIC ENS MOD16 Noah Mosaic VIC ENS MOD16

R2 (−) 0.74 0.45 0.83 0.70 0.83 0.61 0.37 0.76 0.58 0.81
RMSD (mm) 16.14 19.98 20.56 13.31 10.10 15.80 20.63 19.99 15.36 9.87
MBE (mm) 3.83 6.12 −19.06 −3.04 −3.70 −1.29 3.11 −17.96 −5.38 −3.91
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Table 9: Soil texture and hydraulic properties extracted from the POLARIS (Chaney et al., 2019) dataset for
each EC sites.

Layer Sand Silt Clay Bulk
Density θr θs α n Ks

Woodland (cm) (%) (%) (%) (g/cm3) (m3/m3) (m3/m3) (1/cm) (−) (cm/h)
L1 0–5 26.5 37.3 26.5 1.23 0.080 0.536 0.108 1.35 0.636
L2 5–15 24.0 33.5 29.5 1.29 0.079 0.513 0.109 1.35 0.582
L3 15–30 16.5 30.4 42.5 1.29 0.100 0.513 0.079 1.28 0.639
L4 30–60 8.0 32.0 57.5 1.29 0.119 0.513 0.055 1.25 0.827

Savanna
L1 0–5 26.5 37.3 26.5 1.23 0.080 0.536 0.108 1.35 0.724
L2 5–15 24.0 33.5 29.5 1.29 0.079 0.513 0.109 1.35 0.669
L3 15–30 16.5 30.4 42.5 1.29 0.100 0.513 0.079 1.28 0.735
L4 30–60 8.0 32.0 57.5 1.29 0.119 0.513 0.055 1.25 0.915

Grassland
L1 0–5 26.5 37.3 26.5 1.23 0.080 0.536 0.108 1.35 0.709
L2 5–15 24.0 33.5 29.5 1.29 0.079 0.513 0.109 1.35 0.653
L3 15–30 16.5 30.4 42.5 1.29 0.100 0.513 0.079 1.28 0.706
L4 30–60 8.0 32.0 57.5 1.29 0.119 0.513 0.055 1.25 0.899

θS = saturated water content; θr = residual water content; α = inverse air-entry pressure; Ks = saturated conductivity
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Table 10: Vadose-zone model statistics for root mean square difference (RMSD), unbiased RMSD
(ubRMSD), correlation (R2) and Nash-Sutcliffe model efficiency (NSE) for soil water content (SWC) and ET
fluxes using four model parameterizations: (P1) default parameterization with monthly LAI climatology,
(P2) default parameterization with weekly LAI updated from Modis, (P3) P2 with some manipulation to
vegetation parameters, and (P4) the final model using P3 with a seepage-face bottom boundary.

Site 1: Woodland Site 2: Savanna Site 3: Grassland Average
Model

Parameterization
SWC ET SWC ET SWC ET SWC ET

Units (m3/m3) (mm/d) (m3/m3) (mm/d) (m3/m3) (mm/d) (m3/m3) (mm/d)

P1: default
parameterization,
monthly LAI

RMSD 0.084 1.11 0.089 1.37 0.066 1.22 0.080 1.23
ubRMSD 0.044 1.10 0.062 1.36 0.063 1.13 0.056 1.20

R2 0.78 0.41 0.54 0.23 0.47 0.38 0.60 0.34
NSE 0.49 0.40 0.36 0.12 0.52 0.32 0.46 0.28

P2: default
parameterization,
MODIS LAI

RMSD 0.069 0.83 0.075 1.21 0.064 1.25 0.069 1.10
ubRMSD 0.037 0.83 0.054 1.21 0.054 1.18 0.048 1.08

R2 0.81 0.55 0.61 0.27 0.56 0.28 0.66 0.37
NSE 0.54 0.55 0.45 0.12 0.54 0.14 0.51 0.27

P3: P2, optimized
veg parameters

RMSD 0.067 0.87 0.083 1.23 0.065 1.23 0.071 1.11
ubRMSD 0.038 0.86 0.058 1.23 0.060 1.16 0.052 1.09

R2 0.81 0.54 0.59 0.28 0.50 0.30 0.64 0.38
NSE 0.59 0.54 0.42 0.16 0.54 0.19 0.51 0.30

P4: P3, seepage
face

RMSD 0.067 0.88 0.082 1.21 0.066 1.20 0.072 1.10
ubRMSD 0.038 0.87 0.058 1.21 0.061 1.15 0.052 1.08

R2 0.81 0.54 0.60 0.30 0.51 0.32 0.64 0.39
NSE 0.59 0.54 0.43 0.20 0.54 0.22 0.52 0.32

* model did not converge, ha set to −0.1 cm
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Table 11: Vadose-zone model results (P4) at each EC site compared against observed soil water content
and daily ET fluxes for root mean square difference (RMSD), unbiased RMSD (ubRMSD), correlation (R2)
and Nash-Sutcliffe model efficiency (NSE).

Site Vegetation Obs. Units RMSD ubRMSD R2 NSE

1 Woodland 5/all (m3/m3) 0.069 0.038 0.81 0.56
ET (mm/d) 0.860 0.850 0.54 0.53

2 Savanna 5 (m3/m3) 0.057 0.044 0.74 0.63
10 (m3/m3) 0.070 0.054 0.68 0.53
20 (m3/m3) 0.100 0.057 0.73 0.31
All (m3/m3) 0.078 0.056 0.61 0.45
ET (mm/d) 1.170 1.170 0.31 0.18

3 Grassland 5 (m3/m3) 0.072 0.050 0.77 0.51
10 (m3/m3) 0.059 0.052 0.67 0.78
20 (m3/m3) 0.063 0.055 0.67 0.51
50 (m3/m3) 0.068 0.068 0.29 0.29
All (m3/m3) 0.066 0.059 0.53 0.53
ET (mm/d) 1.210 1.160 0.30 0.17

Table 12: Monthly fluxes of ET and transpiration (T) comparison between satellite-based EVI-ET and
vadose-zone model at each site using (P1) default parameters in HYDRUS and a climatology of monthly
LAI and (P4) the vegetation optimized with a seepage face bottom boundary.

P1: Default parameters, LAI climatology, free drainage
ET flux monthly (mm) T flux monthly (mm) ET flux annual (mm)

Site Vegetation R2 RMSD MBE R2 RMSD MBE R2 RMSD MBE
1 Woodland 0.25 9.6 −0.4 0.24 9.6 −2.8 0.41 175 −2
2 Savanna 0.36 19.7 5.4 0.42 18.9 −7.9 0.67 125 −67
3 Grassland 0.46 18.8 11.5 0.51 17.9 −1.9 0.78 100 −135

mean 0.36 16.1 5.5 0.39 15.5 −4.2 0.62 134 −68

P4: P3/Seepage face

ET flux monthly (mm) T flux monthly (mm) ET flux annual (mm)
Site Vegetation R2 RMSD MBE R2 RMSD MBE R2 RMSD MBE

1 Woodland 0.31 0.92 −0.18 0.33 0.91 −2.25 0.46 15.3 1.3
2 Savanna 0.52 1.72 0.41 0.60 1.56 −1.65 0.70 11.1 −5.2
3 Grassland 0.60 1.61 0.98 0.66 1.49 −1.10 0.81 8.3 −11.6

mean 0.48 1.41 0.40 0.53 1.32 −1.67 0.66 11.6 −5.2

MBE = mean bias error between satellite and model at monthly and annual totals
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Table 13: Correlation (R2), root mean squared difference (RMSD), and mean bias error (MBE) between the
monthly water flux using an analytical solution with soil moisture (SM) as the input versus field
precipitation (PPT)–eddy covariance evapotranspiration (ET) for the Savanna and Woodland site.

Water flux (SM) vs PPT-ET

R2 RMSD
(mm/month)

MBE
(mm/month)

Woodland 0.66 55.61 7.28
Savanna 0.59 62.63 13.54

Table 14: Correlation (R2), root mean squared difference (RMSD), and mean bias error (MBE) between the
monthly water flux using an analytical solution with soil moisture (SM) as the input versus precipitation
(PPT)–evapotranspiration from EVI (ET-EVI) for the sites operated by the Edwards Aquifer Authority.

Water flux (SM) vs PPT-ET-EVI

Site R2 RMSD
(mm/month)

MBE
(mm/month)

Salado 0.69 52.42 −3.95
Well 10 0.45 92.39 0.63
Highhill 0.67 60.40 −18.01
Acan 0.59 70.24 9.99
HQcave 0.77 55.81 −1.95
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Appendix – BEG Diffuse Recharge Report

1. Potential Evapotranspiration Calculations

Variable Description Units Eq/Constant/Input
Tall grass

reference*
Rsolar Incoming shortwave/solar

radiation
MJ m−2 h−1 Input

RH Relative humidity Input
T Temperature °C Input
Tdew Dew point temperature °C Input
uhw Wind speed at hw m s-1 Input
P Pressure kPa Input
hw Height of wind measurement m Input 2
hh Height of humidity measurement m Input 2
hv Height of vegetation m Input 0.12
ETo Reference evapotranspiration mm h−1 Eq. 1-1
es Saturated vapor pressure kPa Eq. 1-2
ea Actual vapor pressure kPa Eq. 1-3 or Eq. 1-4
∆ Slope of the saturation vapor

pressure temperature relationship
kPa C−1 Eq. 1-5

λ Latent heat of vaporization MJ kg−1 Eq. 1-6
γ Psychrometric constant kPa C−1 Eq. 1-7
Ε Ratio molecular weight of water

vapor/dry air
0.622

cp Specific heat of the air MJ kg−1 °C−1 1.01E−03
ra Aerodynamic resistance s m−1 Eq. 1-8 Eq 1.9
zom Roughness length governing

momentum transfer
m Eq. 1-10 0.01476

zoh Roughness length governing
transfer of heat and vapor

m Eq. 1-11 0.001476

d Displacement height Eq. 1-12 0.08
K Von Karman’s constant − 0.41
rs Surface resistance s m−1 Eq. 1-13 70
Rl Bulk stomatal resistance s m−1 100 100
LAIa Active Leaf area index m2 m−2 Eq. 1-14 1.44
LAI Leaf area index m2 m−2 Eq. 1-15 2.88
Ρ Atmospheric density kg m−3 Eq 1-16
R Specific gas constant kJ kg−1 K−1 0.287
Tkv Mean virtual temperature K Eq. 1-17



u2 Wind speed at 2 meters m s−1 Eq. 1-18 Eq. 1.19
Rn Net radiation MJ m−2 h−1 Eq. 1-20
Rns Net shortwave radiation MJ m−2 h−1 Eq. 1-21
Α Albedo 0.23
Rnl Net longwave radiation MJ m−2 h−1 Eq. 1-22
Σ Stefan-Boltzmann constant MJ m−2 h−1 2.042E−10
fcd Fraction of cloud Eq. 1-23
Rso Calculated clear-sky radiation MJ m−2 h−1 Eq. 1-24
Ra Extraterrestrial radiation MJ m−2 h−1 Eq. 1-25
Gsc Solar constant MJ m−2 h−1 4.92
dr Inverse relative distance Earth–Sun Eq. 1-26
J Julian day
Φ Latitude Radians
δ Solar declination Radians Eq. 1-27
ω1 Solar time angle at beginning of

period
Radians Eq. 1-28

ω2 Solar time angle at end of period Radians Eq. 1-29
Ω Solar time angle at midpoint Radians Eq. 1-30
T Standard clock time at the

midpoint of the period
Hours

t1 Length of calculation period Hours
Lz Longitude of the center of the local

time zone
Degrees

Lm Longitude of the measurement site Degrees
Sc Seasonal correction for solar time Hours Eq 1-31
G Soil heat flux density MJ m−2 h−1 Eq 1-33 Eq 1-34

* Tall grass reference (ETo) assumes hv = 0.12 and hh = hw= 2 m

𝐸𝑇𝑜 =
൭
𝛥(𝑅𝑛−𝐺) +𝐾𝑡𝑖𝑚𝑒𝜌𝑐𝑝

𝑒𝑠 − 𝑒𝑎
𝑟𝑎

𝛥 + 𝛾ቀ1 + 𝑟𝑠
𝑟𝑎

ቁ
൱

𝜆
Eq. 1-1

𝑒𝑠 = 0.6108𝑒𝑥𝑝 ቀ 17.27𝑇
𝑇 + 237.3

ቁ Eq. 1-2

This is the main equation to calculate ea,

𝑒𝑎 = 𝑅𝐻
100

𝑒𝑠 Eq. 1-3

If RH does not exist, then the following equation is used,

𝑒𝑎 = 0.6108𝑒𝑥𝑝 ቀ 17.27𝑇𝑑𝑒𝑤
𝑇𝑑𝑒𝑤 + 237.3

ቁ Eq. 1-4



𝛥 = 4098
0.6108𝑒𝑥𝑝ቀ 17.27 𝑇

𝑇 + 237.3ቁ

(𝑇 + 237.3)2 Eq. 1-5

𝜆 = 2.501 − 2.361 × 10−3𝑇 Eq. 1-6

𝛾 = 𝑐𝑝𝑃
𝜀𝜆

Eq. 1-7

𝑟𝑎 =
𝑙𝑛ቀℎ𝑤 −𝑑

𝑧𝑜𝑚
ቁ𝑙𝑛൬ℎℎ − 𝑑

𝑧𝑜ℎ
൰

𝑘2𝑢ℎ
Eq. 1-8

𝑟𝑎 = 208
𝑢2

Eq. 1-9

𝑧𝑜𝑚 = 0.123ℎ𝑣 Eq. 1-10

𝑧𝑜ℎ = 0.0123ℎ𝑣 Eq. 1-11

𝑑 = 0.67ℎ𝑣 Eq. 1-12

𝑟𝑠 = 𝑟𝑙
𝐿𝐴𝐼𝑎

Eq. 1-13

𝐿𝐴𝐼𝑎 = 0.5𝐿𝐴𝐼 Eq. 1-14

𝐿𝐴𝐼 = 24ℎ𝑣 Eq. 1-15

𝜌 = 𝑃
𝑇𝑘𝑣𝑅

Eq. 1-16

𝑇𝑘𝑣 = 𝑇𝑘
1 − 0.378𝑒𝑎𝑃

Eq. 1-17

𝑢2 = 𝑢ℎ𝑤
𝑙𝑛 (2 − 𝑑

𝑧𝑜𝑚
)

𝑙𝑛(ℎ𝑤 −𝑑
𝑧𝑜𝑚

)
Eq. 1-18

𝑢2 = 𝑢ℎ
4.87

𝑙𝑛(67.8ℎ𝑤 − 5.42)
Eq. 1-19

𝑅𝑛 = 𝑅𝑛𝑠 − 𝑅𝑛𝑙 Eq. 1-20

𝑅𝑛𝑠 = (1 − 𝛼)𝑅𝑠𝑜𝑙𝑎𝑟 Eq. 1-21

𝑅𝑛𝑙 = 𝜎𝑇𝑘4൫0.34 − 0.14ඥ𝑒𝑎൯𝑓𝑐𝑑 Eq. 1-22

𝑓𝑐𝑑 = 𝑎 𝑅𝑠𝑜𝑙𝑎𝑟
𝑅𝑠𝑜

+ 𝑏 Eq. 1-23

In which:

 a = 1.35
 b = −0.35
 𝑓𝑐𝑑 = 𝑓𝑐𝑑(𝛽 > 0.3)



𝑅𝑠𝑜 = (0.75 + 2 × 10−5𝑧)𝑅𝑎 Eq. 1-24

𝑅𝑎 = 12
𝜋
𝐺𝑠𝑐𝑑𝑟[(𝜔2 −𝜔1) 𝑠𝑖𝑛(𝜑) 𝑠𝑖𝑛(𝛿) + 𝑐𝑜𝑠(𝜑) 𝑐𝑜𝑠(𝛿) (𝑠𝑖𝑛(𝜔2) − 𝑠𝑖𝑛(𝜔1))] Eq. 1-25

𝑑𝑟 = 1 + 0.033𝑐𝑜𝑠 ቀ 2𝜋
365

𝐽ቁ Eq. 1-26

𝛿 = 0.409𝑠𝑖𝑛 ቀ 2𝜋
365

𝐽 − 1.39ቁ Eq. 1-27

𝜔1 = 𝜔 − 𝜋𝑡1
24

Eq. 1-28

𝜔2 = 𝜔 − 𝜋𝑡1
24

Eq. 1-29

𝜔 = 𝜋
12

[(𝑡 + 0.06667(𝐿𝑧 − 𝐿𝑚) + 𝑆𝑐)− 12] Eq. 1-30

𝑆𝑐 = 0.1645 𝑠𝑖𝑛(2𝑏) − 0.1255 × 𝑐𝑜𝑠(𝑏) − 0.025 × 𝑠𝑖𝑛 (𝑏) Eq. 1-31

𝑏 = 2𝜋(𝐽 − 81)
364

Eq. 1-32

𝐺 = 𝐾𝐺 𝑒𝑥𝑝(−0.5 𝐿𝐴𝐼)𝑅𝑛 Eq. 1-33

KG = 0.4 during daytime Rn >0

KG = 2.0 during nighttime Rn <0

𝐺 = 0.1𝑅𝑛 for Rn >0, else 𝐺 = 0.5 × 𝑅𝑛 Eq. 1-34

2. Eddy Covariance Data Processing

The EasyFlux software (Campbell Scientific, Logan, UT) removes spikes from 10-Hz data using signal
strength, measurement output range, and flags which include diagnostic data. The 10-Hz data was then
maximized for covariance to compensate for any lags and averaged to create 30-minute data. Axis rotation
for tilt correction was implemented using the double-rotation method (Tanner and Thurtell, 1969).
Averaging the 10-Hz data (block averaging) leads to attenuation of low frequencies. Eddies smaller than
the measurement path or volume (line/volume averaging) lead to signal attenuation of high-frequency
data. Frequency corrections account for block averaging (Kaimal et al., 1989), line averaging (Moore, 1986;
Moncrieff et al., 1997b; van Dijk, 2002; Foken et al., 2012a), and sensor separation (Horst and Lenschow,
2009; Foken et al., 2012a). The frequency correction for sensor separation is 1 for the IRGASON due to
the design. The SND correction named after Schotanus, Nieuwstadt, and DeBruin (1983) was conducted
to correct the fluctuation of sonic temperature for humidity to obtain the fluctuations of the actual
temperature (Schotanus et al., 1983; Van Dijk et al., 2004). The WPL correction named after Webb,
Pearman, and Leuning (1980) was applied to the CO2 and H2O flux to correct for air-density changes (Webb
et al., 1980). Footprint analysis was then implemented using the findings of Kljun et al. (2004) if the
atmospheric stability (z/L), friction velocity (u∗), and aerodynamic height (z) were within certain ranges.
Those ranges are −200 ≤ z/L ≤ 1, u∗ ≥0.2, and z ≥1. For data that did not meet the atmospheric conditions,
the algorithm described by Kormann and Meixner (2001) was applied.



For the LI-COR’s EddyPro software, the 10-Hz data was flagged using statistical screenings which include
spike detection, amplitude resolution, drop outs, absolute limits, and skewness and kurtosis (Vickers and
Mahrt, 1997). The 10-Hz data was then maximized for covariance to compensate for any lags and averaged
to create 30-minute data. Block averaging was used to extract the turbulent fluxes. Axis rotation for tilt
correction was implemented using the double-rotation method (Wilczak et al., 2001). WPL and SND
corrections were also applied (Webb et al., 1980; Van Dijk et al., 2004). Low-pass frequency correction
(Moncrieff et al., 2004) and high-pass frequency correction (Moncrieff et al., 1997a) was employed.

For all systems, data was discarded if 10% of the 10-Hz data was missing in the 30-minute interval. Spike
detection was implemented for a 13-day window based on the double-differenced time series, using the
median of absolute deviation about the median (Papale et al., 2006). Gap filling was done for the missing
data. If the gap was less than 2 hours, then the missing data was filled through linear interpolation. The
missing Rn data was then filled using the nearby station. For gaps greater than 2 hours, Rn, air temperature,
and vapor pressure deficits were used to find similar data within a ±7 day period (Reichstein et al., 2005).

Energy balance states the difference between Rn and G (the available energy) should equal the sum of the
sensible heat flux (H) and latent heat flux (LE) (the surface energy flux). The sensible heat flux is a result
of the heat energy that is due to the temperature gradient. In contrast, LE is related to phase change
(evaporation). H and LE are found using Equations 2-1 and 2-2,

𝐻 = 𝜌𝑎𝑐𝑝𝑤′𝑇′തതതതതത Eq. 2-1

𝐿𝐸 = 𝜆𝑤′𝑞′തതതതതത Eq. 2-2

in which cp is the specific heat of air, ρa is the density of the air, λ is the latent heat of vaporization, 𝑤′𝑇′തതതതതത

is the covariance between the sonic temperature and the vertical wind, and 𝑤′𝑞′തതതതതത is the covariance
between the water density and the vertical wind. The eddy covariance system can provide the terms 𝑤′𝑇′തതതതതത

and 𝑤′𝑞′തതതതതത.

G is found by adding the soil heat flux measurements to a storage term (∆storage) (Eq. 2-3),

∆𝑠𝑡𝑜𝑟𝑎𝑔𝑒=
ൣ𝑐𝑠𝜌𝑠൫𝑇𝑠𝑜𝑖𝑙,𝑓 − 𝑇𝑠𝑜𝑖𝑙,𝑖൯+𝑐𝑤𝜌𝑤൫𝑇𝑠𝑜𝑖𝑙,𝑓𝑞𝑣,𝑓 − 𝑇𝑠𝑜𝑖𝑙,𝑖𝑞𝑣,𝑖൯൧𝐷

∆𝑡
Eq. 2-3

in which cs is the specific heat of the soil, ρs is the soil bulk density, Tsoil is the soil temperature, cw is the
specific heat of water, ρw is the density of water, qv is the volumetric water content, D is the depth of the
soil heat flux plate, and ∆t is the averaging interval.

Due to factors still being studied in the scientific community, the surface energy fluxes are often times
underestimated by 10−30% relaƟve to the available energy (Wilson et al., 2002; Foken et al., 2012b). LE
and H can be adjusted to force closure while maintaining a constant Bowen ratio (β), which is the ratio
between H and LE as shown in Equations 2-4 and 2-5 (Blanken et al., 1997; Lee, 1998; Twine et al., 2000).

𝐿𝐸𝑐𝑜𝑟𝑟 = (𝑅𝑛 − 𝐺)
1 + 𝛽

Eq. 2-4

𝐻𝑐𝑜𝑟𝑟 = 𝐿𝐸𝑐𝑜𝑟𝑟 × 𝛽 Eq. 2-5



3. Evapotranspiration Modeling

3.1 Vegetation Indices

Landsat surface reflectance spectral indices were derived from Landsat 7 Enhanced Thematic Mapper Plus
(ETM+), and Landsat 8 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) scenes. Vegetation
indices were derived using a combination of these spectral bands after removing contaminated (quality-
flagged) pixels.

The normalized difference VI (NDVI) is used to quantify vegetation greenness and is useful for
understanding vegetation density and assessing changes in plant health. The NDVI uses the red (R) and
the near infrared (NIR) bands and can be found with Equation 3.1 (Rouse Jr et al., 1974).

𝑁𝐷𝑉𝐼 = 𝑁𝐼𝑅 − 𝑅
𝑁𝐼𝑅 + 𝑅

Eq. 3-1

The soil adjusted VI (SAVI) corrects NDVI for soil brightness in areas with less vegetation using L as a
correction factor (Huete, 1988). Even though Huete (1988) found that the optimal L varies with vegetation
density, a constant value was used to reduce the soil noise through a wide range of vegetation. Because
L is usually larger than R, it would buffer the reflectance variations. The SAVI is calculated as:

𝑆𝐴𝑉𝐼 = (1 + 𝐿) 𝑁𝐼𝑅 − 𝑅
𝑁𝐼𝑅 + 𝑅 + 𝐿

Eq. 3-2

The Modified Soil Adjusted VI (MSAVI) attempts to minimize the effect of bare soil on SAVI by
implementing an inductive L function to maximize the reduction of soil effects on the vegetation signal
(Qi et al., 1994). The inductive L is able to continue to reduce the soil background effect and increase the
vegetation sensitivity by increasing the range compared to the SAVI. The MSAVI is

𝑀𝑆𝐴𝑉𝐼 = 2 × 𝑁𝐼𝑅 + 1−ඥ(2 × 𝑁𝐼𝑅 + 1)2 − 8(𝑁𝐼𝑅 − 𝑅)
2

Eq. 3-3

Like NDVI, the enhanced VI (EVI) quantifies vegetation greenness but is more sensitive in areas with dense
vegetation. EVI incorporates L to account for canopy background, C for atmospheric resistance, and the
blue band (B) for reducing background noise, atmospheric noise, and saturation (Liu and Huete, 1995).
The EVI is calculated as:

𝐸𝑉𝐼 = 𝐺 𝑁𝐼𝑅 − 𝑅
𝑁𝐼𝑅 + 𝐶1 × 𝑅 − 𝐶2 × 𝐵 + 𝐿

Eq. 3-4

The Landsat 7 and 8 Collection 1 spectral reflectance vegetation indices were acquired through USGS’s
Earth Resources Observation and Science (EROS) Center Science Processing Architecture (ESPA)
(https://espa.cr.usgs.gov/).

3.2 Evapotranspiration Comparison

North American Land Data Assimilation Systems Phase 2 (NLDAS-2) was used to force land-surface models
that use different methodologies (Noah, Mosaic, and VIC). The VIC model came from the hydrologic
community and is a macroscale semidistributed model (Liang et al., 1994; Wood et al., 1997). Whereas
both the Noah (Chen et al., 1996; Ek et al., 2003a) and the Mosaic (Koster and Suarez, 1992) models were
developed to be coupled with climate models, the Mosaic model accounts for the subgrid heterogeneity



of soil moisture and vegetation. The mean of the land-surface model was also evaluated against the ET,
as some studies have found that using a mean ensemble of the land-surface model performs better than
the individual models (Xia et al., 2014). The evapotranspiration product from Modis (MOD16A2) is an 8-
day composite with a 500-m resolution.

4. ESPERE Approach and Results

ESPERE (estimation of effective rainfall and groundwater recharge) (Lanini et al., 2016) is a toolbox that
provides several (semi)analytical methods for estimating recharge (Lanini et al., 2016). The inputs into the
multiple models from gridMET include daily precipitation, minimum and maximum temperature (yielding
a mean daily temperature), and daily PET. Three models predict recharge on an annual basis (Guttman
and Zuckerman, 1995; Kessler, 1967; Turc, 1954), whereas other models predict recharge on a daily
timestep (Dingman, 2002; Thornthwaite, 1948).

Model Inputs Output Assumptions
Guttman PPT Yearly Empirical formula developed in Israel
Turc PPT, Temp Yearly

Kessler PPT Yearly
Emphasizes recharge during Sept-Dec and Jan-
Apr

Thornthwaite PPT, PET, Temp Daily
Uses crop coefficient. When Peff is less than zero,
Peff is zero

Dingman-
Hamon

PPT, Temp Daily
Calculates PET from T.  When Peff is less than zero
Peff is zero

ET-EVI EVI, PET, PPT, SM, RO Monthly Extrapolation past the range of ET-EVI

HYDRUS-1D
PPT, PET, LAI, vegetation

class, Soil
Daily

Turc (1954), Kessler (1967), and Guttman and Zuckerman (1995) developed an empirical formula to
estimate annual groundwater recharge. The formula was developed in a semiarid Mediterranean climate
for a carbonate aquifer in Israel. The following equations are used depending upon the amount of
precipitation.

𝑅 = 0.45(𝑃 − 180) when P < 600 mm Eq. 4-1a

𝑅 = 0.88(𝑃 − 410) when 600 mm < P < 1000 mm Eq. 4-1b

𝑅 = 0.97(𝑃 − 463) when P > 1000 mm Eq. 4-1c

in which R is annual recharge and P is annual precipitation.

Turc (1954), Kessler (1967), and Guttman and Zuckerman (1995) also developed a relationship between
annual precipitation and mean annual temperature (°C) by using discharge at the outlet for 254
catchments throughout the world to find annual effective rainfall (Peff).

𝑃𝑒𝑓𝑓 = 𝑃 − 𝑃

0.9 + 𝑃2

𝐿2
Eq. 4-2



𝐿 = 300 + 25 𝑇 + 0.05𝑇2 Eq. 4-3

Turc (1954), Kessler (1967), and Guttman and Zuckerman (1995), using 22 years of observations of a
karstic spring in Hungary, found that the annual discharge was correlated with the precipitation for the
previous autumn (Psep_dec) and the beginning of the year (Pjan_apr). However, Andreo et al. (2008) found that
this equation is justified only for aquifers in Mediterranean climate conditions with two annual recharge
periods. This equation uses the corrective precipitation rate (CPR), interannual mean of precipitation from
September to December (m), correcting constant (k), determinative precipitation rate (DPR), and
infiltration rate (IR).

𝐶𝑃𝑅 =
ቀ𝑃𝑠𝑒𝑝𝑑𝑒𝑐−𝑚ቁ

𝑚
Eq. 4-4a

𝐷𝑃𝑅 =
𝑃𝑗𝑎𝑛_𝑎𝑝𝑟

𝑃
+ 𝑘 Eq. 4-4b

𝐼𝑅 = 0.0003 × 𝐷𝑃𝑅3 − 0.0339 × 𝐷𝑃𝑅2 + 2.2778 × 𝐷𝑃𝑅 − 1.5758 Eq. 4-4c

𝑅 = 𝐼𝑅 × 𝑃 Eq. 4-4d

Thornthwaite (1948) used daily precipitation, potential evapotranspiration (PET) and average daily
temperature to find daily effective rainfall. First, actual evapotranspiration (ET) is calculated by Equation
4-5a, in which Kc is the crop coefficient and RU is the soil-water storage. Peff is calculated using Equation
4-5b. If Peff is <0 then Peff becomes 0. RU for the next timestep is calculated using Equation 4-5c. RUmax is
assumed to be 48 mm.

𝐸𝑇𝐴(𝑖) = 𝑚𝑖𝑛൫𝐾𝑐(𝑖) × 𝐸𝑇𝑃(𝑖);𝑃(𝑖) + 𝑅𝑈(𝑖)൯ Eq. 4-5a

𝑃𝑒𝑓𝑓(𝑖) = 𝑃(𝑖) − 𝐸𝑇𝐴(𝑖) + 𝑅𝑈(𝑖) − 𝑅𝑈𝑚𝑎𝑥 Eq. 4-5b

𝑅𝑈(𝑖 + 1) = 𝑚𝑖𝑛൫𝑅𝑈𝑚𝑎𝑥; 𝑃(𝑖) + 𝑅𝑈(𝑖) − 𝐸𝑇𝐴(𝑖)൯ Eq. 4-5c

Thornthwaite (1948), Turc (1954), and Dingman (2002) used daily precipitation and daily mean
temperature to find daily effective rainfall. First, ETP was calculated using Hamon, in which Δ is the sun
declination and l is the latitude in radians (Eq. 4-6a–c). This method accounts for snow, which was ignored.

𝐸𝑇𝑝 = 29.8 × 𝐷 × 𝑒𝑠𝑎𝑡
𝑇 + 273.2

Eq. 4-6a

𝑒𝑠𝑎𝑡 = 0.611 × 𝑒𝑥𝑝 ቀ 17.3 × 𝑇
𝑇 + 237.3

ቁ Eq. 4-6b

𝐷 = 2 × 𝑎𝑐𝑜𝑠(−𝑡𝑎𝑛 (𝛥) × 𝑡𝑎𝑛 (𝑙)) Eq. 4-6c

The next step is to calculate ET and RU (Eq. 4-6d–h). If 𝑃 ≥ 𝐾𝑐 × 𝐸𝑇𝑝,

𝐸𝑇𝑎 = 𝐾𝑐 × 𝐸𝑇𝑝 Eq. 4-6d

𝑅𝑈(𝑖) = 𝑚𝑖𝑛൫𝑃(𝑖) −𝐾𝑐(𝑖) × 𝐸𝑇𝑝(𝑖) + 𝑅𝑈(𝑖 − 1);𝑅𝑈𝑚𝑎𝑥൯ Eq. 4-6e

If 𝑃 < 𝐾𝑐 × 𝐸𝑇𝑝,

𝐸𝑇𝑎 = 𝑃 + 𝑅𝑈(𝑖 − 1) − 𝑅𝑈(𝑖) Eq. 4-6f



𝑅𝑈(𝑖) = 𝑅𝑈(𝑖 − 1) × 𝑒𝑥𝑝 ቀ𝐾𝑐
(𝑖) × 𝐸𝑇𝑝(𝑖) − 𝑃(𝑖)

𝑅𝑈𝑚𝑎𝑥
ቁ Eq. 4-6g

Then Peff is calculated from Equation 4.-6h. If Peff is <0, then Peff = 0.

𝑃𝑒𝑓𝑓 = 𝑃(𝑖) − 𝐸𝑇𝑎(𝑖) − (𝑅𝑈(𝑖) − 𝑅𝑈(𝑖 − 1)) Eq. 4-6h

Comparison between the models in ESPERE and USGS recharge, with the recharge from the water balance,
is shown in Figure A4-1. Guttman, Turc, Thornthwaite, and Dingman-Hamon have an R2 >0.9 for both
basins (Table A4-1). The Kessler method and USGS led to the biggest difference with an R2 of ~0.55 and
an RMSD >0.14 km3. The Kessler method emphasizes recharge during the first 4 and last 4 months of the
year. For this region, large precipitation events that produce recharge can occur outside of these months,
especially in May, one of the highest months for precipitation. The Medina-Cibolo Basin had slightly less
bias and lower RMSDs for all models. The Guttman model produced the highest bias but the lowest
ubRMSD. Figure SI9 shows the model developed by Guttman and Zuckerman (1995) compared to the
results of Cibolo and Medina-Cibolo Basins. Results show that recharge is higher for the model given the
precipitation. This could be because the model was developed in Israel, which has different vegetation
and climate. The recharge is positively biased for the Turc, Thornthwaite, and USGS methods and
negatively biased for Guttman, Kessler, and Hamon. The Turc (1954) model was developed using areas
throughout the world, which may explain the lower bias than the model developed by Guttman and
Zuckerman (1995). The Turc (1954) model also tends to overpredict recharge when the average annual
precipitation is less than 700 mm (Figure SI10). When comparing the models that run on a daily timestep
(Thornthwaite and Dingman-Hamon) to the monthly recharge (Figure SI11), the correlation decreases
slightly (Table A4-2), with the Dingman-Hamon model having a higher R2. The RMSD for the monthly
timestep is lower for the Thornthwaite model.



Figure A4-1: Total recharge comparison between existing recharge models and recharge found from the
water balance method (ET-EVI).

Table A4-1: Root mean squared difference (RMSD), correlation (R2), and mean bias error (MBE) of yearly
recharge between models in ESPERE and USGS and the recharge found in this study for the two basins,
Cibolo (Cib) and Medina-Cibolo (Med-Cib).

MBE (10-6 ac-ft) R2 RMSD (10-6 ac-ft) ubRMSD (10-6 ac-ft)

Cib Med-Cib Cib Med-Cib Cib Med-Cib Cib Med-Cib

Guttman -0.17 -0.12 0.79 0.78 0.18 0.13 0.05 0.03
Turc 0.04 0.03 0.78 0.78 0.09 0.08 0.07 0.07
Kessler -0.10 -0.07 0.50 0.45 0.15 0.13 0.12 0.11
Thornthwaite 0.05 0.04 0.74 0.73 0.10 0.09 0.08 0.08
Dingman-Hamon -0.02 -0.01 0.75 0.74 0.07 0.07 0.06 0.07
USGS 0.10 0.04 0.45 0.46 0.16 0.11 0.13 0.11



Table A4-2: Root mean squared difference (RMSD), correlation (R2), and mean bias error (MBE) of monthly
recharge between models in ESPERE and the recharge found in this study for the two basins, Cibolo (Cib)
and Medina-Cibolo (Med-Cib).

Bias (10-6 ac-ft) R2 RMSD (10-6 ac-ft) ubRMSD (10-6 ac-ft)
Cib Med-Cib Cib Med-Cib Cib Med-Cib Cib Med-Cib

Thornthwaite -0.01 0.00 0.65 0.69 0.03 0.02 0.03 0.02
Dingman-
Hamon

-0.02 -0.01 0.71 0.73 0.04 0.02 0.03 0.01

5. HYDRUS Modeling

For numerical simulations, we used the HYDRUS-1D model (Simunek et al., 2012; 2016) that simulates
water flow in variably saturated porous media utilizing a Galerkin finite-element method based on the
mass-conservative iterative scheme (Celia et al., 1990). The model solves a one-dimensional Richards
equation,

𝜕𝜃
𝜕𝑡

= 𝜕
𝜕𝑧
𝐾 ቀ𝜕ℎ

𝜕𝑧
+ 1ቁ − 𝑆 Eq. 5.1

in whicht represents time (h), z is the vertical coordinate (positive upward) (cm), h denotes the pressure
head (cm), K is the unsaturated hydraulic conductivity function (cm h−1), and S is a sink term representing
plant water uptake [m3 m−3 h−1] defined by Feddes et al. (1978),

𝑆(ℎ) = 𝛽(ℎ, 𝑧)𝑆𝑝 Eq. 5.2

in which the root-water-uptake water-stress-response function β(h) is a prescribed dimensionless
function of the soil water-pressure head and depth (0 ≤ β ≤ 1), and Sp is the potential water uptake rate.
The water-stress-response function accounts for the reduction in water uptake rate as the soil water
potential is reduced below an optimum value. Integrating Equation 3.2.2.4.2 over the depth domain, z,
the actual transpiration rate, Ta, is,

𝑇𝑎 = 𝑃𝑇 ∫ 𝛽(ℎ, 𝑧)𝑆𝑝𝑑𝑧
𝑧
0 Eq. 5.3

in which PT is the potential transpiration rate defined below. The root zone distribution with depth was
regarded as non-uniform, with a higher root mass near the soil surface and decreasing root mass with
depth. The non-uniform distribution, used for all simulations, can be approximated using a root zone
distribution function (Vrugt et al., 2001) as,

𝛽(𝑧) = ቀ1− 𝑧
𝑍𝑑
ቁ 𝑒𝑥𝑝 ቂ− ቀ𝑃𝑧

𝑍𝑑
ቁ |𝑍𝑚 − 𝑧|ቃ Eq. 5.4

in which β(z) is the dimensionless spatial root distribution with depth, z (z ≥0), Zd is the maximum rooting
depth (cm), Pz (−) is an empirical parameter, and Zm is the depth at which root distribution is maximized
(cm). Here, we define Zm using the International Geosphere–Biosphere Programme (IGBP) vegetation
classification (Loveland and Belward, 1997; Friedl et al., 2010) and the vegetation look-up table from Ek
et al. (2003b) which specifies Zd. We specify Zm as 1/3Zd, and Ps as 1.2.



We extract the atmospheric-limited potential evapotranspiration (PET) from the 4-km Gridmet data set
(Abatzoglou, 2013) and partition it between potential canopy transpiration (PT) and soil evaporation (PE)
based on exponential relationship to leaf area index (LAI) as proposed by Kemp et al. (1997),

𝑃𝑇 = 𝑃𝐸𝑇൫1− 𝑒−𝑘𝐿𝐴𝐼൯ Eq. 5.5

𝑃𝐸 = 𝑃𝐸𝑇൫𝑒−𝑘𝐿𝐴𝐼൯ Eq. 5.6

in which the extinction coefficient, k, is 0.39 (Ritchie, 1972); LAI was more recently updated weekly from
a 500-m gridded MODIS-derived data set (Myneni et al., 2015).

For all simulations, we applied the daily total of precipitation accumulated from EAA RainVieux and
applied it over the first 12-hours of each day. Daily PET from Gridmet was applied over the remaining 24.

Soil hydraulic properties were obtained from the POLARIS data set (Chaney et al., 2019) that derived 30-
m probabilistic soil properties from terrain and soils data in the National Cooperative Soil Survey Soil
Geographic Database (SSURGO) and gridded SSURGO database (Soil Survey Staff, 2014). Additionally, the
SSURGO depth to restrictive horizon was rasterized onto the POLARIS grid and used to define the soil
profile maximum depth within a given POLARIS soil layer. POLARIS consists of six soil layers with
boundaries at 5, 15, 30, 60, 100 and 200 cm (Table A5.1).



Table A5-1. Soil texture and hydraulic properties extracted from the Polaris dataset at each field study site.

Depth Sand Silt Clay
Bulk

density
θr θs α n Ks

(cm) (%) (%) (%) (g/cm3) (m3/m3) (m3/m3) (1/cm) (−) (cm/h)
Savanna

L1 0–5 26.5 37.3 26.5 1.23 0.080 0.536 0.108 1.35 0.724
L2 5–15 24.0 33.5 29.5 1.29 0.079 0.513 0.109 1.35 0.669
L3 15–30 16.5 30.4 42.5 1.29 0.100 0.513 0.079 1.28 0.735
L4 30–60 8.0 32.0 57.5 1.29 0.119 0.513 0.055 1.25 0.915
Woodland

L1 0–5 26.5 37.3 26.5 1.23 0.080 0.536 0.108 1.35 0.636
L2 5–15 24.0 33.5 29.5 1.29 0.079 0.513 0.109 1.35 0.582
L3 15–30 16.5 30.4 42.5 1.29 0.100 0.513 0.079 1.28 0.639
L4 30–60 8.0 32.0 57.5 1.29 0.119 0.513 0.055 1.25 0.827
Grassland

L1 0–5 26.5 37.3 26.5 1.23 0.080 0.536 0.108 1.35 0.709
L2 5–15 24.0 33.5 29.5 1.29 0.079 0.513 0.109 1.35 0.653
L3 15–30 16.5 30.4 42.5 1.29 0.100 0.513 0.079 1.28 0.706
L4 30–60 8.0 32.0 57.5 1.29 0.119 0.513 0.055 1.25 0.899

Hydraulic soil properties are described by the modified Mualem-van Genuchten model (Vogel et al., 2000)
in which,

𝑆𝑒 = 𝜃−𝜃𝑟
𝜃𝑠−𝜃𝑟

= ൜[1 + |𝛼ℎ|𝑛]−𝑚 ℎ < ℎ𝑠
1 ℎ ≥ ℎ𝑠

Eq. 5.7

and,

𝐾(𝑆𝑒) = 𝐾𝑠𝑆𝑒𝑙 ቂ1 − ൫1− 𝑆𝑒1/𝑚൯
𝑚
ቃ
2

Eq. 5.8

in which Se is the effective soil water content, θr and θs denote the residual and saturated soil water
content respectively (L3 L−3), α (L−1) and n (−) are parameters that define the shape of the water retention
function, Ks represents saturated hydraulic conductivity (L T−1), l is the pore-connectivity parameter by
Mualem (1976), and hs <0 is the maximum pressure head allowed at the soil surface (i.e., the non-zero
minimum capillary height) (Vogel et al., 2000). Empirical coefficients were used at their assumed values
in which, l = 0.5 and m = 1−1/n.

To solve Equation 5.1, the soil profile boundary and initial state conditions must be defined as,

ℎ(𝑧, 𝑡) = ℎ𝑖(𝑧) at t = 0 Eq. 5.9

and,

−𝐾 ቀ𝜕ℎ
𝜕𝑧

+ 1ቁ = 𝑞0(𝑡) − 𝜕ℎ
𝜕𝑡

  at z = 0, for ha ≤ h ≤ hs Eq. 5.10

 ℎ(0, 𝑡) = ℎ𝑎 for h ≤ ha

 ℎ(0, 𝑡) = ℎ𝑠 for h > hs



in which hi(t) is the initial pressure head set to −1000 cm, q0(t) is the net infiltration rate (i.e., precipitation
minus evaporation), and ha signifies the minimum pressure head allowed at the soil surface set equal to
−10,000 cm. Equation 5.8 describes the atmospheric boundary condition at the soil interface, which
switches between a prescribed flux condition and a prescribed head condition depending on the prevailing
pressure head at the surface. During infiltration, the flux (q(t)) cannot exceed the K(hs). Any additional flux
is considered surface runoff. We specify hs as −1 cm to improve convergence when solving Equation 5.1.
Lastly, the bottom boundary can be prescribed as either a unit gradient or seepage-face condition.
Conceptually, the former is equivalent to an infinite soil column, whereas the later must reach a
prescribed h to initiate flux out of the profile. This is similar to a column experiment in which the exit is
essentially at atmospheric conditions and saturation must be reached prior to any discharge.
Impermeable or semi-permeable karst fractures are more appropriated simulated with a seepage-face
boundary, set here to −10 cm.

6. Geophysics

Plot-scale geophysical measurements were collected using electromagnetic induction (EMI), ground-
penetrating radar (GPR), and time-domain electromagnetic induction (TEM). Collection of EMI and GPR
measurements was attempted at all EAA PET locations. At each site, a 100-m-long transect was marked
using plastic stakes so it could be revisited. During each measurement, the depth to bedrock was
measured using a 1-m extended drill bit. Soil water content (at 0–12 cm) was measured with a portable
soil moisture probe (Hydrasense II, Campbell Scientific). Measurement dates include:

Date EMI GPR TEM
April 14, 2016 X
August 10, 2016 X
September 8, 2016 X
November 14–16, 2016 X X X
April 2017 X X
November 2017 X X
March 7, 2018 X
March 22, 2018 X
April 12, 2018 X
April 19, 2018 X

These efforts were largely failures. Electrical conductivity was generally very low (<20 mS/m) in both the
soil and epikarst. For either EMI or GPR to image the subsurface, there must be dichotomy in materials.
We found none, even after wet periods. Thus, the EMI inversion software had difficulties resolving
material properties. The GPR reflections were very faint and of little value. We also found our validation
(drilling and portable moisture meter) was insufficient. The drilling was laborious and ineffective. The drill
was routinely stopped by what was possibly gravel. If the soil was dry, it stopped much shallower than
when wet. The moisture sensor resolved soil moisture too shallow to be comparable to either EMI or GPR.

The results are presented here, but we found little use overall for the geophysical measurements.



6.1 Electromagnetic Induction (EMI)

A Dualem-2 sensor (Dualem Instruments, Ontario, Canada) was used to measure bulk electrical
conductivity from four dipoles ranging from 0.5 to 3.0 m in depth. Soil-water storage, soil mapping, and
depth-to-bedrock are critical components for estimating and scaling the storage of infiltrated waters in
the shallow vadose zone. Using time-lapse EMI, we can map changes in electrical properties of the shallow
subsurface to better understand the spatial variability of transient soil moisture and static soil properties
(Abdu et al., 2007; Robinson et al., 2008; Robinson et al., 2012).

The Dualem-21S operates in a narrow band around a frequency of 9.0 kHz (Figure A6-1a). A schematic of
the sensor shows dual-geometry receivers at 1 and 2 m from the transmitting coil (Figure A6-1b). This
configuration allows for simultaneous sounding of four depths of conductivity and the ability to analyze
subsurface layering in the top few meters of the earth. All data were inverted using the EMTOMO software
(Santos et al., 2010; Monteiro Santos et al., 2011).

Figure A6-1: Schematic of the Dualem-21S sensor. It shows the transmitting coil (T), and four receiving
coils—two of which are in a horizontal coplanar (HCP) (H1 & H2), whereas the other two  are in a
perpendicular (PERP) (P1 & P2) loop orientation with respect to the transmitting coil.

Below, inverted conductivity plots are presented by site.







6.2 Ground-penetrating Radar (GPR)

Ground-penetrating radar (GPR) with a 400-MHz antenna in constant offset was used to map soil thickness
and common midpoint offset was used to accurately measure the depth to bedrock and soil dielectric
permittivity (i.e., in situ, depth-integrated water content) at select locations. GPR uses an electromagnetic
(EM) pulse to gather subsurface information (Knight, 2001). GPR data acquisition systems used the
Subsurface Interface Radar-3000 System manufactured by Geophysical Survey Systems, Inc. (Figure A6-
2).

Figure A6-2: Setup of the GSSI SIR-3000 system with 400-MHz dual antenna and survey wheel used for
this study.



GPR consists of transmitting and receiver antennae and a control unit that handles collection and setup
parameters, data storage, and display. When the GPR is run along a survey line, EM pulses are radiated
toward the ground by the transmission antenna (Figure A6-3). When the GPR encounters a point target
or an interface with contrasting EM properties, part of the radar energy is reflected back to the receiver
antenna, which then passes the radar energy to a recorder for the data to be displayed on the control
unit. The time the pulse takes to travel down to a point target or an interface and return to the surface is
known as the two-way travel time, which varies based on the propagation velocities within the subsurface
materials as a function of their moisture content and resulting EM properties.

Figure A6-3: Working principle of the GPR (http://scantech.ie/scantech-about-gpr.html).

In fall 2016, GPR surveys were conducted during a relatively dry period (and following no major storm
events) at four locations within Camp Bullis: Salado, High Hill, Acan, and Bunny Hole. Because site
conditions have a strong control on data acquisition, overall open and relatively flat areas were targeted
to minimize potential anthropogenic and topographic clutters. However, minor surficial dip changes and
vegetation were encountered in places, adding to the noise in the data. At each site, GPR data was
collected in both directions between the end points of each profile to ensure repeatability. The SIR-3000
system by GSSI was operated with a monostatic 400-MHz antenna. The antenna was chosen to balance
the relatively shallow targeted depth of investigation and data resolution. The system was run in
continuous mode and was configured for a sampling interval time window of 50 ns with 1024 samples per
trace. Section lengths were 100 m with a trace spacing of 0.02 m. Considering the dielectric constant in
limestone (the dominant subsurface lithology) in dry conditions is ~8 and GPR signal velocity is ~0.12 m/ns,
subsurface penetration depths achieved in the field were estimated to be in the ~3.6 m range.

The GPR data collected along 2D profiles in the field at Camp Bullis was post-processed using matGPR
software (v 3.1). The following steps were taken to process the raw data from each 2D GPR profile:

 Step 1: Move time-zero to adjust the vertical position of the surface reflection.
 Step 2: Trim time window to discard the late arrivals when they represented noisy data.
 Step 3: Remove DC component (arithmetic mean) from each trace of the GPR profile.



 Step 4: Equalize traces by making the sum of the absolute values of all samples in a trace the same
for all traces.

 Step 5: Apply standard automatic gain control (AGC) to adjust gain as a function of the RMS
amplitude computed over a sliding time window of 15 ns.

 Step 6: Remove global background trace, also known as stacking the data. This removes the
background trace from the data to enhance coherent signal (horizontal banding) and reduces
random noise (radar signal received from the subsurface).

 Step 7: Remove the foreground trace using a sliding window of width 15 to suppress dipping
features.

See Figures A6-4 and A6-5 for examples of outcomes.

Figure A6-4: A good example showing a 2D GPR profile from the Salado location at Camp Bullis. Raw GPR
data (top) was collected in the field, processed (middle), and interpreted. The geological interpretation
overlain on the processed data shows a prominent undulating GPR reflector (in green). Based on the local
geology, the GPR facies above the green interface is interpreted as soil, whereas the one below is
interpreted as limestone bedrock (Woodruff et al., 2008). Offsets in reflectors are interpreted as shallow
faults (black dotted lines), which are numerous along the profile.



Figure A6-5: A more typical poor example at ACAN in which no reflectors are visible.

6.3 Time Domain Electromagnetic Induction (TEM)

EMI is a frequency-based EMI method, whereas TEM uses a static loop to record the time decay of an
induced EM Signal. TEM transmits up to 3 amps into a 40-by-40-m transmitter loop with the receiver coil
in the center (Figure A6-6). Measurements are sampled with 1 MHz and up to 200 gates to create
soundings to ~100 m. We used a WalkTEM system from ABEM. Six sounds were collected in November
2016 (Figure A6-7). We present two cross sections trending east–west (Figure A6-8) and north–south
(Figure A6-9).

Figure A6-6: Basic system configuration, consisting of a transmitter loop, one or two receiver coils, an
external battery with a series of dampeners, and the WalkTEM instrument.



Figure A6-7: TEM measurement locations on Camp Bullis.



Figure A6-8: TEM sounding along cross section #1 from west to east.

Figure A6-9: TEM sounding along cross section #2 from north to south.



7. Results of Statistical Analyses, using SigmaPlot (v13)

Linear Regression Wednesday, September 16, 2020, 3:38:58 PM

Data source: Data 1 in statistics.JNB

HYDRUS ET W = -26.085 + (1.460 * EC ET W)

N  = 24

R = 0.897 Rsqr = 0.805 Adj Rsqr = 0.796

Standard Error of Estimate = 13.445

Coefficient Std. Error t   P Std. Coeff.
Constant -26.085 9.717 -2.684 0.014
EC ET W 1.460 0.153 9.519 <0.001 0.897

Analysis of Variance:
 DF  SS  MS   F   P

Regression 1 16379.302 16379.302 90.609 <0.001
Residual 22 3976.929 180.770
Total 23 20356.231 885.054

Normality Test (Shapiro-Wilk) Failed (P = 0.015)

Power of performed test with alpha = 0.050: 1.000

Linear Regression Friday, September 25, 2020, 3:00:51 PM

Data source: Data 1 in statistics.JNB

HYDRUS ET S = 28.553 + (0.583 * EC ET S)

N  = 27

R = 0.525 Rsqr = 0.276 Adj Rsqr = 0.247

Standard Error of Estimate = 27.039

Coefficient Std. Error t   P Std. Coeff.
Constant 28.553 11.972 2.385 0.025
EC ET S 0.583 0.189 3.085 0.005 0.525

Analysis of Variance:
 DF  SS  MS   F   P

Regression 1 6956.067 6956.067 9.515 0.005
Residual 25 18277.215 731.089
Total 26 25233.282 970.511

Normality Test (Shapiro-Wilk) Passed (P = 0.884)



Power of performed test with alpha = 0.050: 0.815

Linear Regression Wednesday, September 16, 2020, 3:39:45 PM

Data source: Data 1 in statistics.JNB

HYDRUS ET G = 7.670 + (0.643 * EC ET G)

N  = 8

R = 0.794 Rsqr = 0.631 Adj Rsqr = 0.569

Standard Error of Estimate = 14.354

Coefficient Std. Error t   P Std. Coeff.
Constant 7.670 13.231 0.580 0.583
EC ET G 0.643 0.201 3.200 0.019 0.794

Analysis of Variance:
 DF  SS  MS   F   P

Regression 1 2109.973 2109.973 10.240 0.019
Residual 6 1236.298 206.050
Total 7 3346.271 478.039

Normality Test (Shapiro-Wilk) Passed (P = 0.936)

Power of performed test with alpha = 0.050: 0.677



8. Supplemental Figures

Figure SI1: Comparison of average monthly change in soil-water storage (dS) from the NLDAS-2 Noah,
Mosaic, and VIC land-surface models for the [a] Cibolo and [b] Medina-Cibolo Basins.



Figure SI2: Comparison of [a] monthly average and [b] monthly standard deviation of change in soil-water
storage (dS) from NLDAS-2 Noah at 0–40 cm for the Cibolo and Medina-Cibolo Basins during the study
period.



Figure SI3: Five-day running average of the ratios LE/(Rn − G) and H/(Rn − G) of the [a] Woodland, [b]
Savanna, and [c] Grassland using the daily total fluxes.



Figure SI4: Energy balance closure for [a–c] daily averages and [d–f] monthly averages for the [a and d]
Woodland, [b and e] Savanna, and [c and f] Grassland.



Figure SI5: Time series from Landsat for the vegetation indices ([a] normalized difference vegetation index
(NDVI), [b] soil adjusted vegetation index (SAVI), [c] modified soil adjusted vegetation index [MSAVI], and
[d] enhanced vegetation index [EVI]) for the three eddy covariance locations during the study period.



Figure SI6: Comparison of [a] average monthly and [b] monthly average and standard deviation of
evapotranspiration (ET) from ET-EVI for the Cibolo and Medina-Cibolo Basins during the study period.



Figure SI7: Monthly water flux derived from soil moisture vs PPT-ET.



Figure SI8: [a] Daily and [b] yearly discharge at the outlet for the Cibolo and Medina-Cibolo Basins.



Figure SI9: Average annual recharge vs average annual precipitation of Cibolo and Medina-Cibolo Basins
compared to the Guttman and Zuckerman (1995) model.



Figure SI10: Average annual recharge vs average annual precipitation vs average annual temperature of
Cibolo and Medina-Cibolo Basins compared to the Turc (1954) model.



Figure SI11: Monthly recharge comparison between models in ESPERE and the recharge found in this study.
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